Article

Beta-defensin 2 enhances immunogenicity and protection of an adenovirus-based H5N1 influenza vaccine at an early time.

Bindley Bioscience Center, Purdue University West Lafayette, IN, USA.
Virus Research (Impact Factor: 2.83). 09/2013; DOI: 10.1016/j.virusres.2013.09.013
Source: PubMed

ABSTRACT Reports of human infections with highly pathogenic H5N1 avian influenza viruses in many countries in Asia and Africa with varying case fatality rates highlight the pandemic potential of these viruses. In order to contain a rapidly spreading influenza virus in a pandemic scenario, a vaccine which can induce rapid and robust immune responses, preferably in a single dose, is necessary. Murine beta-defensin 2 (Mbd2), a small molecular weight protein expressed by epithelial cells, has been shown to enhance antigen-specific immune responses by recruiting and activating professional antigen presenting cells to the site of vaccination. This study assessed the potential of Mbd2 to enhance the immunogenicity and protective efficacy of a human adenovirus (HAd)-based vaccine expressing the hemagglutinin (HA) and nucleoprotein (NP) [HAd-HA-NP] of an H5N1 influenza virus. A single inoculation of mice with both HAd-HA-NP and a HAd vector expressing Murine β-defensin 2 (HAd-Mbd2) resulted in significantly higher levels of both humoral and cell-mediated immune responses compared to the groups vaccinated only with HAd-HA-NP. These responses were evident even at Day 7 post-immunization. Furthermore, the HAd-HA-NP+HAd-Mbd2-immunized group receiving the lowest vector dose (2×10(7)+1×10(7)) was completely protected against an rgH5N1 virus challenge on Day 7 post-vaccination. These results highlight the potential of Mbd2 as a genetic adjuvant in inducing rapid and robust immune responses to a HAd-based vaccine.

0 Followers
 · 
182 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The increasing outbreaks of highly pathogenic avian influenza A (HPAI) H5N1 viruses in birds and human bring out an urgent need to develop a safe and effective vaccine to control and prevent H5N1 infection. Lactococcus lactis (L. lactis) based vaccine platform is a promising approach for mucosal H5N1 vaccine development. Intranasal immunization is the potential to induce mucosal immune response which is associated with protective immunity. To develop a safe and effective mucosal vaccine against HAPI H5N1, we extended our previous study by evaluating the immunogenicity of L. lactis-psA-HA1 in the absence of adjuvant via intranasal route in the ferret model. Ferrets administered intranasally with L. lactis-pgsA-HA1 could elicit robust humoral and mucosal immune responses, as well as significant HI titers. Importantly, ferrets were completely protected from H5N1 virus challenge. These findings suggest that L. lactis-pgsA-HA1 can be considered an alternative mucosal vaccine during A/H5N1 pandemic. Copyright © 2014 Elsevier B.V. All rights reserved.
    Virus Research 11/2014; 196C:56-59. DOI:10.1016/j.virusres.2014.11.009 · 2.83 Impact Factor