Dataset

In vitro clonal propagation and genetic fidelity of the regenerants of Spilanthes calva DC. using RAPD and ISSR marker

DOI: 10.1007/s12298-012-0152-4

ABSTRACT An efficient in vitro protocol has been established for clonal propagation of elite plant of Spilanthes calva DC., an important source of spilanthol, an antimalarial larvicidal compound. Nodal explants excised from field grown plant of S. calva DC. when reared on Murashige and Skoog's medium augmented with different cytokinins, viz. N 6 -Ben-zyladenine (BA), N 6 -(2-isopentenyl) adenine (2iP) and 6-furfuryl aminopurine (Kn), differentiated multiple shoots from the axils. BA at 10 μM proved optimum for elicitation of multiple shoots in 91.6 % cultures with an average of 7.12 shoots per explant within 6 weeks. The excised shoots rooted on half strength Murashige and Skoog's medium supplemented with 0.1 μM IBA. Micropropagated plants were hardened and transferred to field for acclimatization, where 95 % plants survived and were phenotypically similar to the donor plant. Random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR) markers were employed to evaluate the genetic fidelity amongst the regenerants. Eleven individuals, randomly chosen amongst a population of 120 regenerants were compared with the donor plant. A total of 71 scorable bands, ranging in size from 100 bp to 1,100 bp were generated by a combina-tion of the two markers in the aforesaid plants. All banding profiles from micropropagated plants were monomorphic and similar to those of mother plant. The similarity values amongst the aforesaid plants varied from 0.967 to 1.000. The dendro-gram generated through UPGMA (Unweighted Pair Group Method with arithmetic mean) analysis revealed 98 % similarity amongst them, thus confirming the genetic fidelity of the in vitro clones. Keywords Cytokinin . Fidelity . ISSR . Micropropagation . RAPD . Spilanthes calva DC. Abbreviations 2iP N 6 -(2-isopentenyl) adenine BA N 6 -benzyladenine CTAB Cetyl trimethyl ammonium bromide DMRT Duncan's multiple range test IAA Indole-3-acetic acid IBA Indole-3-butyric acid ISSR Inter simple sequence repeat Kn 6-furfuryl aminopurine MS Murashige and Skoog NAA α-naphthalene acetic acid NTSYS Numerical taxonomy and multivariate analysis system RAPD Random amplified polymorphic DNA SAHN Sequential agglomerative hierarchical and nested clustering method program in NTSYS SIMQUAL Similarity for qualitative data program in NTSYS SPSS Statistical package for social sciences UPGMA Unweighted pair group method with arithmetic mean Introduction

1 Bookmark
 · 
128 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: An efficient regeneration system was established for an ethnomedicinal shrub Rhinacanthus nasutus from root-derived callus organogenesis. The root segments were cultured on MS medium supplemented with various concentrations of Kn (1.0-4.0 μM) alone or in combination with IBA (0.2-0.6 μM) or 2, 4-D (0.5-1.5 μM). The optimum frequency (94 %) of callus induction was recorded on MS medium supplemented with 3.0 μM Kn and 0.4 μM IBA. For shoot regeneration from callus, MS medium supplemented with different concentrations (1.0-7.0 μM) of BA or TDZ alone or in combination with NAA (0.2-1.0 μm) was employed. The highest frequency of shoot regeneration (91 %) and mean number of shoots (28.3) were observed on MS medium supplemented with 5.0 μM BA and 0.7 μM NAA. The shoots were excised and cultured on MS medium with 4.0 μM IBA produced 3.4 roots per shoot in 88 % cultures. Of the 65 plants transferred to soil 54 survived (83 %). The plants were transferred to field after successful hardening. RAPD analysis of the regenerated plants showed high similarity with the mother plant.
    Applied biochemistry and biotechnology 10/2013; · 1.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tylophora indica Burm F. Merrill. is widely used against various diseases owing to the presence an array of medicinally important secondary metabolites. Its stem is bitter, stomachic, stimulates bile secretion, enriches the blood and cures diseases like diabetes, fever, flatulence, hypertension, jaundice, leucorrhoea, urinary disease and upper respiratory tract infection. It is neglected for tissue culture work because of deciduous nature of climbing shrub, facing problems for micropropagation. Hence, in vitro regeneration of complete plantlets was done through indirect organogenesis in Tylophora indica. Calli were produced from in vivo leaves of T. indica on MS medium supplemented with 6-Benzylaminopurine (BAP: 2.0 mg l(-1)) and Indole-3-butyric acid (IBA: 0.5 mg l(-1)). The multiple shoots (12.00 ± 1.50) emerged and elongated on MS medium fortified with Thidiazuron (TDZ: 0.1 mg l(-1)). They were rooted on half strength MS medium having IBA (0.5 mg l(-1)) (7.75 ± 0.25) after 20 days of sub-culturing followed by hardening and acclimatization. During indirect regeneration of plants, chances of somaclonal variations may arise. These variations should be identified to produce true to type plants. Plantlets raised through tissue culture were used to validate the clonal fidelity through Inter simple sequence repeat markers (ISSR). Clonal fidelity is a major consideration in commercial micropropagation using in vitro tissue culture methods. During the study, total 71 clear and distinct bands were produced using 6 primers. The banding pattern of each primer was uniform and comparable to mother plant and showed about 93% homology using un-weighted pair group method with arithmetic averaging (UPGMA). ISSR analysis confirmed the genetic stability of in vitro raised plants.
    SpringerPlus 01/2014; 3:400.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the present study, polyembryoids of oil palm (Elaeis guineensis Jacq.) were cryopreserved with successful revival of 68 % for the first time using the droplet vitrification technique. Excised polyembryoids (3-5-mm diameter) from 3-month-old in vitro cultures were pre-cultured for 12 h in liquid Murashige and Skoog medium supplemented with 0.5 M sucrose. The polyembryoids were osmoprotected in loading solution [10 % (w/v) dimethyl sulphoxide (DMSO) plus 0.7 M sucrose] for 30 min at room temperature and then placed on aluminium strips where they were individually drenched in chilled droplets of vitrification solution (PVS2) [30 % (w/v) glycerol plus 15 % (w/v) ethylene glycol (EG) plus 15 % (w/v) DMSO plus 0.4 M sucrose] for 10 min. The aluminium strips were enclosed in cryovials which were then plunged quickly into liquid nitrogen and kept there for 1 h. The polyembryoids were then thawed and unloaded (using 1.2 M sucrose solution) with subsequent transfer to regeneration medium and stored in zero irradiance. Following for 10 days of storage, polyembryoids were cultured under 16 h photoperiod of 50 μmol m(-2) s(-1) photosynthetic photon flux density, at 23 ± 1 °C. Post-thaw growth recovery of 68 % was recorded within 2 weeks of culture, and new shoot development was observed at 4 weeks of growth. Scanning electron microscopy revealed that successful regeneration of cryopreserved polyembryoids was related to maintenance of cellular integrity, presumably through PVS2 exposure for 10 min. The present study demonstrated that cryopreservation by droplet vitrification enhanced the regeneration percentages of oil palm in comparison with the conventional vitrification method previously reported.
    Protoplasma 06/2014; · 2.86 Impact Factor

Dataset

Download
39 Downloads
Available from
Jun 1, 2014