Article

Disruption of Glutamate-Glutamine-GABA Cycle Significantly Impacts on Suicidal Behaviour: Survey of the Literature and Own Findings on Glutamine Synthetase.

Department of Psychiatry, University of Magdeburg, Leipziger Str.44, D-39120Magdeburg, Germany. .
CNS & neurological disorders drug targets (Impact Factor: 2.7). 08/2013; DOI: 10.2174/18715273113129990091
Source: PubMed

ABSTRACT The aetiology of suicide is complex and still not completely understood. The present communication, which consists of two parts, aims to shed some light on the role of amino acidergic neurotransmission in suicide. In the first part we provide an overview of the literature showing that with the exception of certain gamma-aminobutyric acid transporters, virtually all components of the glutamate-glutamine- gamma-aminobutyric acid cycle are, in some way or other, abnormal in suicide victims, which indicates a prominent involvement of the glutamatergic and gamma-aminobutyric acidergic neurotransmitter systems in suicidal behaviour. In the second part we present own immunohistochemical findings showing that densities of glutamine synthetase expressing glial cells in the mediodorsal thalamus as well as in the dorsolateral prefrontal and orbitofrontal cortex of schizophrenic suicide completers are significantly elevated compared with controls and non-suicide individuals with schizophrenia, thus calling into question the belief that cerebral glutamine synthetase deficit is indicative of suicidal behaviour.

1 Follower
 · 
146 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Major depression is a common, recurrent mental illness that affects millions of people worldwide. Recently, a unique fast neuroprotective and antidepressant treatment effect has been observed by ketamine, which acts via the glutamatergic system. Hence, a steady accumulation of evidence supporting a role for the excitatory amino acid neurotransmitter (EAA) glutamate in the treatment of depression has been observed in the last years. Emerging evidence indicates that N-methyl-D-aspartate (NMDA), group 1 metabotropic glutamate receptor antagonists and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) agonists have antidepressant properties. Indeed, treatment with NMDA receptor antagonists has shown the ability to sprout new synaptic connections and reverse stress-induced neuronal changes. Based on glutamatergic signaling, a number of therapeutic drugs might gain interest in the future. Several compounds such as ketamine, memantine, amantadine, tianeptine, pioglitazone, riluzole, lamotrigine, AZD6765, magnesium, zinc, guanosine, adenosine aniracetam, traxoprodil (CP-101,606), MK-0657, GLYX-13, NRX-1047, Ro25-6981, LY392098, LY341495, D-cycloserine, D-serine, dextromethorphan, sarcosine, scopolamine, pomaglumetad methionil, LY2140023, LY404039, MGS0039, MPEP, 1-Aminocyclopropanecarboxylic acid all of which target this system have already been brought up, some of them recently. Drugs targeting the glutamatergic system might open up a promising new territory for the development of drugs to meet the needs of patients with major depression. Copyright © 2015. Published by Elsevier Inc.
    Progress in Neuro-Psychopharmacology and Biological Psychiatry 03/2015; DOI:10.1016/j.pnpbp.2015.02.015 · 4.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To review the published literature on the efficacy of ketamine for the treatment of suicidal ideation (SI). The PubMed and Cochrane databases were searched up to January 2015 for clinical trials and case reports describing therapeutic ketamine administration to patients presenting with SI/suicidality. Searches were also conducted for relevant background material regarding the pharmacological function of ketamine. Nine publications (six studies and three case reports) met the search criteria for assessing SI after administration of subanesthetic ketamine. There were no studies examining the effect on suicide attempts or death by suicide. Each study demonstrated a rapid and clinically significant reduction in SI, with results similar to previously described data on ketamine and treatment-resistant depression. A total of 137 patients with SI have been reported in the literature as receiving therapeutic ketamine. Seven studies delivered a dose of 0.5 mg/kg intravenously over 40 min, while one study administered a 0.2 mg/kg intravenous bolus and another study administered a liquid suspension. The earliest significant results were seen after 40 min, and the longest results were observed up to 10 days postinfusion. Consistent with clinical research on ketamine as a rapid and effective treatment for depression, ketamine has shown early preliminary evidence of a reduction in depressive symptoms, as well as reducing SI, with minimal short-term side effects. Additional studies are needed to further investigate its mechanism of action, long-term outcomes, and long-term adverse effects (including abuse) and benefits. In addition, ketamine could potentially be used as a prototype for further development of rapid-acting antisuicidal medication with a practical route of administration and the most favorable risk/benefit ratio.
    Drugs in R & D 03/2015; 15(1). DOI:10.1007/s40268-015-0081-0 · 1.71 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Glutamine synthetase catalyses the ATP-dependent condensation of ammonia and glutamate to form glutamine, thus playing a pivotal role in glutamate and glutamine homoeostasis. Despite a plethora of studies on this enzyme, knowledge about the regional and cellular distribution of this enzyme in human brain is still fragmentary. Therefore, we mapped fourteen post-mortem brains of psychically healthy individuals for the distribution of the glutamine synthetase immunoreactive protein. It was found that glutamine synthetase immunoreactivity is expressed in multiple gray and white matter astrocytes, but also in oligodendrocytes, ependymal cells and certain neurons. Since a possible extra-astrocytic expression of glutamine synthetase is highly controversial, we paid special attention to its appearance in oligodendrocytes and neurons. By double immunolabeling of mouse brain slices and cultured mouse brain cells for glutamine synthetase and cell-type-specific markers we provide evidence that besides astrocytes subpopulations of oligodendrocytes, microglial cells and neurons express glutamine synthetase. Moreover, we show that glutamine synthetase-immunopositive neurons are not randomly distributed throughout human and mouse brain, but represent a subpopulation of nitrergic (i.e. neuronal nitric oxide synthase expressing) neurons. Possible functional implications of an extra-astrocytic localization of glutamine synthetase are discussed.
    Journal of Chemical Neuroanatomy 07/2014; 61-62. DOI:10.1016/j.jchemneu.2014.07.003 · 2.52 Impact Factor