RASA1 Mutations and Associated Phenotypes in 68 Families with Capillary Malformation-Arteriovenous Malformation

Center for Human Genetics, Cliniques universitaires St Luc, Université catholique de Louvain, Brussels, Belgium.
Human Mutation (Impact Factor: 5.14). 08/2013; 34(12). DOI: 10.1002/humu.22431
Source: PubMed


Capillary malformation-arteriovenous malformation (CM-AVM) is an autosomal dominant disorder, caused by heterozygous RASA1 mutations, and manifesting multifocal capillary malformations and high risk for fast-flow lesions. A limited number of patients has been reported, raising the question of the phenotypic borders. We identified new patients with a clinical diagnosis of CM-AVM, and patients with overlapping phenotypes. RASA1 was screened in 261 index patients with: CM-AVM (n = 100), common capillary malformation(s) (port-wine stain; n = 100), Sturge-Weber syndrome (n = 37), or isolated arteriovenous malformation(s) (n = 24). Fifty-eight distinct RASA1 mutations (43 novel) were identified in 68 index patients with CM-AVM and none in patients with other phenotypes. A novel clinical feature was identified: cutaneous zones of numerous small white pale halos with a central red spot. An additional question addressed in this study was the "second-hit" hypothesis as a pathophysiological mechanism for CM-AVM. One tissue from a patient with a germline RASA1 mutation was available. The analysis of the tissue showed loss of the wild-type RASA1 allele. In conclusion, mutations in RASA1 underscore the specific CM-AVM phenotype and the clinical diagnosis is based on identifying the characteristic capillary malformations. The high incidence of fast-flow lesions warrants careful clinical and radiologic examination, and regular follow-up. This article is protected by copyright. All rights reserved.

Download full-text


Available from: David J Amor, May 30, 2014
87 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lymphatic anomalies include a variety of developmental and/or functional defects affecting the lymphatic vessels: sporadic and familial forms of primary lymphedema, secondary lymphedema, chylothorax and chylous ascites, lymphatic malformations, and overgrowth syndromes with a lymphatic component. Germline mutations have been identified in at least 20 genes that encode proteins acting around VEGFR-3 signaling but also downstream of other tyrosine kinase receptors. These mutations exert their effects via the RAS/MAPK and the PI3K/AKT pathways and explain more than a quarter of the incidence of primary lymphedema, mostly of inherited forms. More common forms may also result from multigenic effects or post-zygotic mutations. Most of the corresponding murine knockouts are homozygous lethal, while heterozygotes are healthy, which suggests differences in human and murine physiology and the influence of other factors.
    The Journal of clinical investigation 03/2014; 124(3):898-904. DOI:10.1172/JCI71614 · 13.22 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Angelman syndrome (AS) is caused by a lack of expression of the maternally inherited UBE3A gene in the brain. However, about 10% of individuals with a clinical diagnosis of AS do not have an identifiable molecular defect. It is likely that most of those individuals have an AS-like syndrome that is clinically and molecularly distinct from AS. These AS-like syndromes can be broadly classified into chromosomal microdeletion and microduplication syndromes, and single-gene disorders. The microdeletion/microduplication syndromes are now easily identified by chromosomal microarray analysis and include Phelan–McDermid syndrome (chromosome 22q13.3 deletion), MBD5 haploinsufficiency syndrome (chromosome 2q23.1 deletion), and KANSL1 haploinsufficiency syndrome (chromosome 17q21.31 deletion). The single-gene disorders include Pitt–Hopkins syndrome (TCF4), Christianson syndrome (SLC9A6), Mowat–Wilson syndrome (ZEB2), Kleefstra syndrome (EHMT1), and Rett (MECP2) syndrome. They also include disorders due to mutations in HERC2, adenylosuccinase lyase (ADSL), CDKL5, FOXG1, MECP2 (duplications), MEF2C, and ATRX. Although many of these single-gene disorders can be caused by chromosomal microdeletions resulting in haploinsufficiency of the critical gene, the individual disorders are often caused by intragenic mutations that cannot be detected by chromosomal microarray analysis. We provide an overview of the clinical features of these syndromes, comparing and contrasting them with AS, in the hope that it will help guide clinicians in the diagnostic work-up of individuals with AS-like syndromes.
    American Journal of Medical Genetics Part A 04/2014; 164A(4):975-92. DOI:10.1002/ajmg.a.36416 · 2.16 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Vascular malformations are linked to mutations in RAS p21 protein activator 1 (RASA1, also known as p120RasGAP); however, due to the global expression of this gene, it is unclear how these mutations specifically affect the vasculature. Here, we tested the hypothesis that RASA1 performs a critical effector function downstream of the endothelial receptor EPHB4. In zebrafish models, we found that either RASA1 or EPHB4 deficiency induced strikingly similar abnormalities in blood vessel formation and function. Expression of WT EPHB4 receptor or engineered receptors with altered RASA1 binding revealed that the ability of EPHB4 to recruit RASA1 is required to restore blood flow in EPHB4-deficient animals. Analysis of EPHB4-deficient zebrafish tissue lysates revealed that mTORC1 is robustly overactivated, and pharmacological inhibition of mTORC1 in these animals rescued both vessel structure and function. Furthermore, overexpression of mTORC1 in endothelial cells exacerbated vascular phenotypes in animals with reduced EPHB4 or RASA1, suggesting a functional EPHB4/RASA1/mTORC1 signaling axis in endothelial cells. Tissue samples from patients with arteriovenous malformations displayed strong endothelial phospho-S6 staining, indicating increased mTORC1 activity. These results indicate that deregulation of EPHB4/RASA1/mTORC1 signaling in endothelial cells promotes vascular malformation and suggest that mTORC1 inhibitors, many of which are approved for the treatment of certain cancers, should be further explored as a potential strategy to treat patients with vascular malformations.
    Journal of Clinical Investigation 05/2014; 124(6). DOI:10.1172/JCI67084 · 13.22 Impact Factor
Show more