Article

Transmission Disequilibrium of Small CNVs in Simplex Autism.

Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA.
The American Journal of Human Genetics (Impact Factor: 10.99). 09/2013; DOI: 10.1016/j.ajhg.2013.07.024
Source: PubMed

ABSTRACT We searched for disruptive, genic rare copy-number variants (CNVs) among 411 families affected by sporadic autism spectrum disorder (ASD) from the Simons Simplex Collection by using available exome sequence data and CoNIFER (Copy Number Inference from Exome Reads). Compared to high-density SNP microarrays, our approach yielded ∼2× more smaller genic rare CNVs. We found that affected probands inherited more CNVs than did their siblings (453 versus 394, p = 0.004; odds ratio [OR] = 1.19) and that the probands' CNVs affected more genes (921 versus 726, p = 0.02; OR = 1.30). These smaller CNVs (median size 18 kb) were transmitted preferentially from the mother (136 maternal versus 100 paternal, p = 0.02), although this bias occurred irrespective of affected status. The excess burden of inherited CNVs among probands was driven primarily by sibling pairs with discordant social-behavior phenotypes (p < 0.0002, measured by Social Responsiveness Scale [SRS] score), which contrasts with families where the phenotypes were more closely matched or less extreme (p > 0.5). Finally, we found enrichment of brain-expressed genes unique to probands, especially in the SRS-discordant group (p = 0.0035). In a combined model, our inherited CNVs, de novo CNVs, and de novo single-nucleotide variants all independently contributed to the risk of autism (p < 0.05). Taken together, these results suggest that small transmitted rare CNVs play a role in the etiology of simplex autism. Importantly, the small size of these variants aids in the identification of specific genes as additional risk factors associated with ASD.

0 Followers
 · 
148 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Autosomal genetic variation is presumed equivalent in males and females and makes a major contribution to disease risk. We set out to identify whether maternal copy number variants (CNVs) contribute to autism spectrum disorders (ASDs). Surprisingly, we observed a higher autosomal burden of large, rare CNVs in females in the population, reflected in, but not unique to, ASD families. Meta-analysis across control data sets confirms female excess in CNV number (P=2.1 × 10(-5)) and gene content (P=4.1 × 10(-3)). We additionally observed CNV enrichment in ASD mothers compared with control mothers (P=0.03). We speculate that tolerance for CNV burden contributes to decreased female fetal loss in the population and that ASD-specific maternal CNV burden may contribute to high sibling recurrence. These data emphasize the need for study of familial CNV risk factors in ASDs and the requirement of sex-matched comparisons.Molecular Psychiatry advance online publication, 13 January 2015; doi:10.1038/mp.2014.179.
    Molecular Psychiatry 01/2015; 20(2). DOI:10.1038/mp.2014.179 · 15.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Sequencing and exome-chip technologies have motivated development of novel statistical tests to identify rare genetic variation that influences complex diseases. Although many rare-variant association tests exist for case-control or cross-sectional studies, far fewer methods exist for testing association in families. This is unfortunate, because cosegregation of rare variation and disease status in families can amplify association signals for rare variants. Many researchers have begun sequencing (or genotyping via exome chips) familial samples that were either recently collected or previously collected for linkage studies. Because many linkage studies of complex diseases sampled affected sibships, we propose a strategy for association testing of rare variants for use in this study design. The logic behind our approach is that rare susceptibility variants should be found more often on regions shared identical by descent by affected sibling pairs than on regions not shared identical by descent. We propose both burden and variance-component tests of rare variation that are applicable to affected sibships of arbitrary size and that do not require genotype information from unaffected siblings or independent controls. Our approaches are robust to population stratification and produce analytic p values, thereby enabling our approach to scale easily to genome-wide studies of rare variation. We illustrate our methods by using simulated data and exome chip data from sibships ascertained for hypertension collected as part of the Genetic Epidemiology Network of Arteriopathy (GENOA) study. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
    The American Journal of Human Genetics 03/2015; 96(4). DOI:10.1016/j.ajhg.2015.01.020 · 10.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genetic generalised epilepsy (GGE) is the most common form of genetic epilepsy, accounting for 20% of all epilepsies. Genomic copy number variations (CNVs) constitute important genetic risk factors of common GGE syndromes. In our present genome-wide burden analysis, large (≥ 400 kb) and rare (< 1%) autosomal microdeletions with high calling confidence (≥ 200 markers) were assessed by the Affymetrix SNP 6.0 array in European case-control cohorts of 1,366 GGE patients and 5,234 ancestry-matched controls. We aimed to: 1) assess the microdeletion burden in common GGE syndromes, 2) estimate the relative contribution of recurrent microdeletions at genomic rearrangement hotspots and non-recurrent microdeletions, and 3) identify potential candidate genes for GGE. We found a significant excess of microdeletions in 7.3% of GGE patients compared to 4.0% in controls (P = 1.8 x 10-7; OR = 1.9). Recurrent microdeletions at seven known genomic hotspots accounted for 36.9% of all microdeletions identified in the GGE cohort and showed a 7.5-fold increased burden (P = 2.6 x 10-17) relative to controls. Microdeletions affecting either a gene previously implicated in neurodevelopmental disorders (P = 8.0 x 10-18, OR = 4.6) or an evolutionarily conserved brain-expressed gene related to autism spectrum disorder (P = 1.3 x 10-12, OR = 4.1) were significantly enriched in the GGE patients. Microdeletions found only in GGE patients harboured a high proportion of genes previously associated with epilepsy and neuropsychiatric disorders (NRXN1, RBFOX1, PCDH7, KCNA2, EPM2A, RORB, PLCB1). Our results demonstrate that the significantly increased burden of large and rare microdeletions in GGE patients is largely confined to recurrent hotspot microdeletions and microdeletions affecting neurodevelopmental genes, suggesting a strong impact of fundamental neurodevelopmental processes in the pathogenesis of common GGE syndromes.
    PLoS Genetics 05/2015; 11(5):e1005226. DOI:10.1371/journal.pgen.1005226 · 8.17 Impact Factor