Article

Differential activation of catalase expression and activity by PPAR agonists: Implications for astrocyte protection in anti-glioma therapy.

Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.
Redox biology 01/2013; 1(1):70-9. DOI: 10.1016/j.redox.2012.12.006
Source: PubMed

ABSTRACT Glioma survival is dismal, in part, due to an imbalance in antioxidant expression and activity. Peroxisome proliferator-activated receptor (PPAR) agonists have antineoplastic properties which present new redox-dependent targets for glioma anticancer therapies. Herein, we demonstrate that treatment of primary cultures of normal rat astrocytes with PPAR agonists increased the expression of catalase mRNA protein, and enzymatic activity. In contrast, these same agonists had no effect on catalase expression and activity in malignant rat glioma cells. The increase in steady-state catalase mRNA observed in normal rat astrocytes was due, in part, to de novo mRNA synthesis as opposed to increased catalase mRNA stability. Moreover, pioglitazone-mediated induction of catalase activity in normal rat astrocytes was completely blocked by transfection with a PPARγ-dominant negative plasmid. These data suggest that defects in PPAR-mediated signaling and gene expression may represent a block to normal catalase expression and induction in malignant glioma. The ability of PPAR agonists to differentially increase catalase expression and activity in normal astrocytes but not glioma cells suggests that these compounds might represent novel adjuvant therapeutic agents for the treatment of gliomas.

0 Bookmarks
 · 
102 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Alcoholic liver injury represents a progressive process with a range of consequences including hepatic steatosis, steatohepatitis, liver fibrosis, cirrhosis, and hepatocellular carcinoma. Targeting key molecular regulators involved in the development of alcoholic liver injury may be of great value in the prevention of liver injury. Peroxisome proliferator-activated receptor α (PPARα) plays a pivotal role in modulation of hepatic lipid metabolism, oxidative stress, inflammatory response and fibrogenesis. As such, PPARα may be a potential therapeutic target for the treatment of alcoholic liver disease.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Maternal diabetes induces a pro-oxidant/pro-inflammatory intrauterine environment related to the induction of congenital anomalies. Peroxisome proliferator activated receptors (PPARs) are transcription factors that regulate antioxidant and anti-inflammatory pathways. We investigated whether maternal diets supplemented with olive oil, enriched in oleic acid, a PPAR agonist, can regulate the expression of PPAR system genes, levels of lipoperoxidation and activity of matrix metalloproteinases (MMPs) and their endogenous inhibitors (TIMPs) in embryos and decidua from diabetic rats. The embryos and decidua from diabetic rats showed reduced expression of PPARs and increased concentration of lipoperoxidation, MMPs and TIMPs, whereas the maternal treatments enriched in olive oil increased PPARδ in embryos and PPARγ and PPARγ-coactivator-1α expression in decidua, and increased TIMPs concentrations and decreased lipoperoxidation and MMPs activity in both tissues. Thus, maternal diets enriched in olive oil can regulate embryonic and decidual PPAR system genes expression and reduce the pro-oxidant/pro-inflammatory environment during rat early organogenesis.
    Reproductive Toxicology 09/2014; DOI:10.1016/j.reprotox.2014.09.004 · 2.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study was conducted to investigate how the activity and expression of certain paramount antioxidant enzymes respond to grape seed extract (GSE) addition in primary muscle cells of goats. Gluteal primary muscle cells (PMCs) isolated from a 3-week old goat were cultivated as an unstressed cell model, or they were exposed to 100 µM H2O2 to establish a H2O2-stimulated cell model. The activities of catalase (CAT), superoxide dismutases (SOD) and glutathione peroxidases (GPx) in combination with other relevant antioxidant indexes [i.e., reduced glutathione (GSH) and total antioxidant capacity (TAOC)] in response to GSE addition were tested in the unstressed and H2O2-stimulated cell models, and the relative mRNA levels of the CAT, GuZu-SOD, and GPx-1 genes were measured by qPCR. In unstressed PMCs, GSE addition at the dose of 10 µg/ml strikingly attenuated the expression levels of CAT and CuZn-SOD as well as the corresponding enzyme activities. By contrast, in cells pretreated with 100 µM H2O2, the expression and activity levels of these two antioxidant enzymes were enhanced by GSE addition at 10 µg/ml. GSE addition promoted GPx activity in both unstressed and stressed PMCs, while the expression of the GPx 1 gene displayed partial divergence with GPx activity, which was mitigated by GSE addition at 10 µg/ml in unstressed PMCs. GSH remained comparatively stable except for GSE addition to H2O2-stimulated PMCs at 60 µg/ml, in which a dramatic depletion of GSH occurred. Moreover, GSE addition enhanced TAOC in unstressed (but not H2O2-stimulated) PMCs. GSE addition exerted a bidirectional modulating effect on the mRNA levels and activities of CAT and SOD in unstressed and stressed PMCs at a moderate dose, and it only exhibited a unidirectional effect on the promotion of GPx activity, reflecting its potential to improve antioxidant protection in ruminants.
    PLoS ONE 09/2014; 9(9):e107670. DOI:10.1371/journal.pone.0107670 · 3.53 Impact Factor

Full-text (2 Sources)

Download
20 Downloads
Available from
Jun 10, 2014