Article

DNA-directed self-assembly of shape-controlled hydrogels.

1] Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, USA [2] Department of Medicine, Center for Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA [3] Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
Nature Communications (Impact Factor: 10.74). 09/2013; 4:2275. DOI: 10.1038/ncomms3275
Source: PubMed

ABSTRACT Using DNA as programmable, sequence-specific 'glues', shape-controlled hydrogel units are self-assembled into prescribed structures. Here we report that aggregates are produced using hydrogel cubes with edge lengths ranging from 30 μm to 1 mm, demonstrating assembly across scales. In a simple one-pot agitation reaction, 25 dimers are constructed in parallel from 50 distinct hydrogel cube species, demonstrating highly multiplexed assembly. Using hydrogel cuboids displaying face-specific DNA glues, diverse structures are achieved in aqueous and in interfacial agitation systems. These include dimers, extended chains and open network structures in an aqueous system, and dimers, chains of fixed length, T-junctions and square shapes in the interfacial system, demonstrating the versatility of the assembly system.

4 Followers
 · 
155 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A rapidly formed supramolecular polypeptide-DNA hydrogel was prepared and used for in situ multilayer three-dimensional bioprinting for the first time. By alternative deposition of two complementary bio-inks, designed structures can be printed. Based on their healing properties and high mechanical strengths, the printed structures are geometrically uniform without boundaries and can keep their shapes up to the millimeter scale without collapse. 3D cell printing was demonstrated to fabricate live-cell-containing structures with normal cellular functions. Together with the unique properties of biocompatibility, permeability, and biodegradability, the hydrogel becomes an ideal biomaterial for 3D bioprinting to produce designable 3D constructs for applications in tissue engineering.
    Angewandte Chemie International Edition 02/2015; 54(13). DOI:10.1002/anie.201411383 · 11.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Our understanding of cell biology and its integration with materials science has led to technological innovations in the bioengineering of tissue-mimicking grafts that can be utilized in clinical and pharmaceutical applications. Bioengineering of native-like multiscale building blocks provides refined control over the cellular microenvironment, thus enabling functional tissues. In this review, we focus on assembling building blocks from the biomolecular level to the millimeter scale. We also provide an overview of techniques for assembling molecules, cells, spheroids, and microgels and achieving bottom-up tissue engineering. Additionally, we discuss driving mechanisms for self- and guided assembly to create micro-to-macro scale tissue structures. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Trends in Biotechnology 03/2015; 33(5). DOI:10.1016/j.tibtech.2015.02.003 · 10.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Natural and biodegradable chitosan with unique amino groups has found widespread applications in tissue engineering and drug delivery. However, its applications have been limited by the poor solubility of native chitosan in neutral pH solution, which subsequently fails to achieve cell-laden hydrogel at physiological pH. To address this, we incorporated UV crosslinking ability in chitosan, allowing fabrication of patterned cell-laden and rapid transdermal curing hydrogel in vivo. The hydrosoluble, UV crosslinkable and injectable N-methacryloyl chitosan (N-MAC) were synthesized via single-step chemoselective N-acylation reaction, which simultaneously endowed chitosan with well solubility in neutral pH solution, UV crosslinkable ability and injectability. The solubility of N-MAC in neutral pH solution increased 2.21-fold with substitution degree increasing from 10.9 % to 28.4 %. The N-MAC allowed fabrication of cell-laden microgels with on-demand patterns via photolithography, and the cell viability in N-MAC hydrogel maintained 96.3 ± 1.3%. N-MAC allowed rapid transdermal curing hydrogel in vivo within 60s through minimally invasive clinical surgery. Histological analysis revealed that low-dose UV irradiation hardly induced skin injury and acute inflammatory response disappeared after 7 days. N-MAC would allow rapid, robust and cost-effective fabrication of patterned cell-laden polysaccharide microgels with unique amino groups serving as building blocks for tissue engineering and rapid transdermal curing hydrogel in vivo for localized and sustained protein delivery. Copyright © 2015. Published by Elsevier Ltd.
    Acta biomaterialia 04/2015; DOI:10.1016/j.actbio.2015.04.026 · 5.68 Impact Factor