The Regulation of SOX7 and Its Tumor Suppressive Role in Breast Cancer

Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina.
American Journal Of Pathology (Impact Factor: 4.6). 09/2013; 346(5). DOI: 10.1016/j.ajpath.2013.07.025
Source: PubMed

ABSTRACT Both epigenetic silencing and genetic deletion of tumor suppressors contribute to the development and progression of breast cancer. SOX7 is a transcription factor important to development, and its down-regulation has been reported in tumor tissues and cell lines of prostate, colon, and lung cancers. However, the regulation of SOX7 expression and its functional role in breast cancer have not been reported. The current study demonstrates that SOX7 mRNA and protein expression are down-regulated in breast cancer tissues and cell lines compared with adjacent normal tissues and nontumorigenic cells, respectively. The SOX7 promoter is hypermethylated in breast cancer cell lines compared with nontumorigenic cells, and the inhibition of DNA methylation increases SOX7 mRNA levels. With shRNA-mediated SOX7 silencing, nontumorigenic immortal breast cells display increased proliferation, migration, and invasion and form structures that resemble that of breast cancer cells in a three-dimensional culture system. Conversely, ectopic SOX7 expression inhibits proliferation, migration, and invasion of breast cancer cells in vitro and tumor growth in vivo. Importantly, we discovered that SOX7 transcript levels positively correlated with clinical outcome of 674 breast cancer patients. Overall, data suggest that SOX7 acts as a tumor suppressor in breast cancer. SOX7 expression is likely regulated by multiple mechanisms and potentially serves as a prognostic marker for breast cancer patients.

  • [Show abstract] [Hide abstract]
    ABSTRACT: SOX7 belongs to the SOX (SRY-related HMG-box) family of transcription factors that have been shown to regulate multiple biological processes, such as hematopoiesis, vasculogenesis and cardiogenesis during embryonic development. Recent studies indicate that several SOX family members play important roles in tumorigenesis. In this review, we introduce SOX7 gene and protein structures, and discuss its expression and functional role in cancer development and progression. SOX7 is frequently downregulated in many human cancers and its reduced expression correlates with poor prognoses of several cancers. Functional studies reveal many tumor suppressive properties of SOX7 in prostate, colon, lung, and breast cancers. To date, although a few target genes of SOX7 have been identified, SOX7-mediated gene expression has not been investigated in a cancer-relevant context. Our recent studies not only for the first time demonstrate a tumor suppressive role of SOX7 in a xenograft mouse model, but also unravel that many genes regulating cell death, growth and apoptosis are affected by SOX7, strongly supporting a pivotal role of SOX7 in tumorigenesis. Thus, currently available data clearly indicate a tumor suppressive role of SOX7, but the mechanisms underlying its gene expression and tumor suppressive activity remain undetermined. The research of SOX7 in cancers remains a fertile area to be explored.
    Histology and histopathology 11/2013; · 2.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: SOX genes are transcription factors with important roles in embryonic development and carcinogenesis. The SOX family of 20 genes is responsible for regulating lineage and tissue specific gene expression patterns, controlling numerous developmental processes including cell differentiation, sex determination, and organogenesis. As is the case with many genes involved in regulating development, SOX genes are frequently deregulated in cancer. In this perspective we provide a brief overview of how SOX proteins can promote or suppress cancer growth. We also present a pan-cancer analysis of aberrant SOX gene expression and highlight potential molecular mechanisms responsible for their disruption in cancer. Our analyses indicate the prominence of SOX deregulation in different cancer types and reveal potential roles for SOX genes not previously described in cancer. Finally, we summarize our recent identification of SOX15 as a candidate tumor suppressor in pancreatic cancer and propose several research avenues to pursue to further delineate the emerging role of SOX15 in development and carcinogenesis.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Sox7 is a tumor suppressor gene that plays an important role in the inhibition and progression of cancer. In the present study, we sought to investigate Sox7 expression in gastric cancer (GC) and its association with the Wnt/β-catenin signaling pathway. We also wished to determine its clinicopathological significance and prognostic implications. Sox7 expression and its effects on the Wnt/β-catenin signaling in vitro were assessed by reverse transcription-polymerase chain reaction using the AGS, MKN-45 and GES-1 gastric cell lines. We also used immunohistochemistry on paraffin-embedded tissue samples and western blot analysis on fresh tissue samples from patients with GC. The results revealed that Sox7 expression was significantly lower in the GC samples than in distal normal tissues, which was in accordance with our results obtained from our in vitro experiments on the cell lines. However, the expression levels of β-catenin were significantly higher. Sox7 and β-catenin expression significantly correlated with the depth of invasion, lymph node metastasis, distant metastasis and the TNM stage. Patient samples that were Sox7-negative correlated with a significantly shorter survival time. Multivariate survival analysis revealed that Sox7 and β-catenin had an independent effect on the survival of GC patients. Sox7 and β-catenin expression in GC had a negative liner correlation with each other. Our findings suggest that Sox7 plays an important role in inhibiting tumorigenesis and progression, and may be a potential marker for predicting the prognosis of patients with GC.
    International Journal of Molecular Medicine 04/2014; 34(1). DOI:10.3892/ijmm.2014.1759 · 1.88 Impact Factor