Article

The alteration of spontaneous low frequency oscillations caused by acute electromagnetic fields exposure.

China Academy of Telecommunication Research of Ministry of Industry and Information Technology, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
Clinical neurophysiology: official journal of the International Federation of Clinical Neurophysiology (Impact Factor: 3.12). 09/2013; DOI: 10.1016/j.clinph.2013.07.018
Source: PubMed

ABSTRACT The motivation of this study is to evaluate the possible alteration of regional resting state brain activity induced by the acute radiofrequency electromagnetic field (RF-EMF) exposure (30min) of Long Term Evolution (LTE) signal.
We designed a controllable near-field LTE RF-EMF exposure environment. Eighteen subjects participated in a double-blind, crossover, randomized and counterbalanced experiment including two sessions (real and sham exposure). The radiation source was close to the right ear. Then the resting state fMRI signals of human brain were collected before and after the exposure in both sessions. We measured the amplitude of low frequency fluctuation (ALFF) and fractional ALFF (fALFF) to characterize the spontaneous brain activity.
We found the decreased ALFF value around in left superior temporal gyrus, left middle temporal gyrus, right superior temporal gyrus, right medial frontal gyrus and right paracentral lobule after the real exposure. And the decreased fALFF value was also detected in right medial frontal gyrus and right paracentral lobule.
The study provided the evidences that 30min LTE RF-EMF exposure modulated the spontaneous low frequency fluctuations in some brain regions.
With resting state fMRI, we found the alteration of spontaneous low frequency fluctuations induced by the acute LTE RF-EMF exposure.

2 Bookmarks
 · 
249 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mobile phones create a radio-frequency electromagnetic field (EMF) around them when in use, the effects of which on brain physiology in humans are not well known. We studied the effects of a commercial mobile phone on regional cerebral blood flow (rCBF) in healthy humans using positron emission tomography (PET) imaging. Positron emission tomography data was acquired using a double-blind, counterbalanced study design with 12 male subjects performing a computer-controlled verbal working memory task (letter 1-back). Explorative and objective voxel-based statistical analysis revealed that a mobile phone in operation induces a local decrease in rCBF beneath the antenna in the inferior temporal cortex and an increase more distantly in the prefrontal cortex. Our results provide the first evidence, suggesting that the EMF emitted by a commercial mobile phone affects rCBF in humans. These results are consistent with the postulation that EMF induces changes in neuronal activity.
    Journal of Cerebral Blood Flow & Metabolism 08/2006; 26(7):885-90. · 5.40 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Digital human models are frequently obtained from supine-postured medical images or cadaver slices, but many applications require standing models. This paper presents the work of reconstructing standing Chinese adult anatomical models from supine postured slices. Apart from the previous studies, the deformation works on 2-D segmented slices. The surface profile of the standing posture is adjusted by population measurement data. A non-uniform texture amplification approach is applied on the 2-D slices to recover the skin contour and to redistribute the internal tissues. Internal organ shift due to postures is taken into account. The feet are modified by matrix rotation. Then, the supine and standing models are utilised for the evaluation of electromagnetic field exposure over wide band frequency and different incident directions.
    Radiation Protection Dosimetry 08/2012; · 0.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Functional imaging studies have shown that certain brain regions, including posterior cingulate cortex (PCC) and ventral anterior cingulate cortex (vACC), consistently show greater activity during resting states than during cognitive tasks. This finding led to the hypothesis that these regions constitute a network supporting a default mode of brain function. In this study, we investigate three questions pertaining to this hypothesis: Does such a resting-state network exist in the human brain? Is it modulated during simple sensory processing? How is it modulated during cognitive processing? To address these questions, we defined PCC and vACC regions that showed decreased activity during a cognitive (working memory) task, then examined their functional connectivity during rest. PCC was strongly coupled with vACC and several other brain regions implicated in the default mode network. Next, we examined the functional connectivity of PCC and vACC during a visual processing task and show that the resultant connectivity maps are virtually identical to those obtained during rest. Last, we defined three lateral prefrontal regions showing increased activity during the cognitive task and examined their resting-state connectivity. We report significant inverse correlations among all three lateral prefrontal regions and PCC, suggesting a mechanism for attenuation of default mode network activity during cognitive processing. This study constitutes, to our knowledge, the first resting-state connectivity analysis of the default mode and provides the most compelling evidence to date for the existence of a cohesive default mode network. Our findings also provide insight into how this network is modulated by task demands and what functions it might subserve.
    Proceedings of the National Academy of Sciences 02/2003; 100(1):253-8. · 9.81 Impact Factor

Full-text (2 Sources)

View
159 Downloads
Available from
May 27, 2014