Roles of Lung Epithelium in Neutrophil Recruitment During Pneumococcal Pneumonia.

Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States, Nagasaki University Graduate School of Biomedical Sciences, Department of Molecular Microbiology and Immunology, Nagasaki, Japan
American Journal of Respiratory Cell and Molecular Biology (Impact Factor: 3.99). 09/2013; 50(2). DOI: 10.1165/rcmb.2013-0114OC
Source: PubMed


Epithelial cells line the respiratory tract and interface with the external world. Epithelial cells contribute in some fashion to pulmonary inflammation, but specific epithelial roles have proven difficult to define. To discover unique epithelial activities that influence immunity during infection, we generated mice with NF-κB RelA mutated throughout all epithelial cells of the lung, and we coupled this approach with epithelial cell isolation from infected and uninfected lungs for cell-specific analyses of gene induction. The RelA mutant mice appeared normal basally, but in response to pneumococcus in the lungs they were unable to rapidly recruit neutrophils to the air spaces. Epithelial cells expressed multiple neutrophil-stimulating cytokines during pneumonia, all of which depended on RelA. Cytokine expression by non-epithelial cells was unaltered by the epithelial mutation of RelA. Epithelial cells were the predominant sources of CXCL5 and GM-CSF, while non-epithelial cells were major sources for other neutrophil-activating cytokines. Epithelial RelA mutation decreased whole lung levels of CXCL5 and GM-CSF during pneumococcal pneumonia, while lung levels of other neutrophil-recruiting factors were unaffected. Defective neutrophil recruitment in epithelial mutant mice could be rescued by administration of CXCL5 or GM-CSF. These results reveal a specialized immune function for the pulmonary epithelium, the induction of CXCL5 and GM-CSF to accelerate neutrophil recruitment in the infected lung.

15 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pneumonia is initiated by microbes in the lung, but physiological processes integrating responses across diverse cell types and organ systems dictate the outcome of respiratory infection. Resistance, or actions of the host to eradicate living microbes, in the lungs involves a combination of innate and adaptive immune responses triggered by air-space infection. Resilience, or the ability of the host tissues to withstand the physiologically damaging effects of microbial and immune activities, is equally complex, precisely regulated, and determinative. Both immune resistance and tissue resilience are dynamic and change throughout the lifetime, but we are only beginning to understand such remodeling and how it contributes to the incidence of severe pneumonias, which diminishes as childhood progresses and then increases again among the elderly. Here, we review the concepts of resistance, resilience, and remodeling as they apply to pneumonia, highlighting recent advances and current significant knowledge gaps. Expected final online publication date for the Annual Review of Physiology Volume 77 is February 10, 2015. Please see for revised estimates.
    Annual Review of Physiology 08/2014; 77(1). DOI:10.1146/annurev-physiol-021014-071937 · 18.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Zinc finger protein 36, C3H type-like 1 (ZFP36L1) is one of several Zinc Finger Protein 36 (Zfp36) family members, which bind AU rich elements within 3' untranslated regions (UTRs) to negatively regulate the post-transcriptional expression of targeted mRNAs. The prototypical member of the family, Tristetraprolin (TTP or ZFP36), has been well-studied in the context of inflammation and plays an important role in repressing pro-inflammatory transcripts such as TNF-α. Much less is known about the other family members, and none have been studied in the context of infection. Using macrophage cell lines and primary alveolar macrophages we demonstrated that, like ZFP36, ZFP36L1 is prominently induced by infection. To test our hypothesis that macrophage production of ZFP36L1 is necessary for regulation of the inflammatory response of the lung during pneumonia, we generated mice with a myeloid-specific deficiency of ZFP36L1. Surprisingly, we found that myeloid deficiency of ZFP36L1 did not result in alteration of lung cytokine production after infection, altered clearance of bacteria, or increased inflammatory lung injury. Although alveolar macrophages are critical components of the innate defense against respiratory pathogens, we concluded that myeloid ZFP36L1 is not essential for appropriate responses to bacteria in the lungs. Based on studies conducted with myeloid-deficient ZFP36 mice, our data indicate that, of the Zfp36 family, ZFP36 is the predominant negative regulator of cytokine expression in macrophages. In conclusion, these results imply that myeloid ZFP36 may fully compensate for loss of ZFP36L1 or that Zfp36l1-dependent mRNA expression does not play an integral role in the host defense against bacterial pneumonia.
    PLoS ONE 10/2014; 9(10):e109072. DOI:10.1371/journal.pone.0109072 · 3.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Scavenger receptor B-I (SR-BI) is a multirecognition receptor that regulates cholesterol trafficking and cardiovascular inflammation. Although it is expressed by neutrophils (PMNs) and lung-resident cells, no role for SR-BI has been defined in pulmonary immunity. Herein, we report that, compared with SR-BI(+/+) counterparts, SR-BI(-/-) mice suffer markedly increased mortality during bacterial pneumonia associated with higher bacterial burden in the lung and blood, deficient induction of the stress glucocorticoid corticosterone, higher serum cytokines, and increased organ injury. SR-BI(-/-) mice had significantly increased PMN recruitment and cytokine production in the infected airspace. This was associated with defective hematopoietic cell-dependent clearance of lipopolysaccharide from the airspace and increased cytokine production by SR-BI(-/-) macrophages. Corticosterone replacement normalized alveolar neutrophilia but not alveolar cytokines, bacterial burden, or mortality, suggesting that adrenal insufficiency derepresses PMN trafficking to the SR-BI(-/-) airway in a cytokine-independent manner. Despite enhanced alveolar neutrophilia, SR-BI(-/-) mice displayed impaired phagocytic killing. Bone marrow chimeras revealed this defect to be independent of the dyslipidemia and adrenal insufficiency of SR-BI(-/-) mice. During infection, SR-BI(-/-) PMNs displayed deficient oxidant production and CD11b externalization, and increased surface L-selectin, suggesting defective activation. Taken together, SR-BI coordinates several steps in the integrated neutrophilic host defense response to pneumonia.Mucosal Immunology advance online publication, 22 October 2014; doi:10.1038/mi.2014.88.
    Mucosal Immunology 10/2014; 8(3). DOI:10.1038/mi.2014.88 · 7.37 Impact Factor
Show more