Article

Cerebral organoids model human brain development and microcephaly

Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna 1030, Austria.
Nature (Impact Factor: 42.35). 08/2013; 501(7467). DOI: 10.1038/nature12517
Source: PubMed

ABSTRACT The complexity of the human brain has made it difficult to study many brain disorders in model organisms, highlighting the need for an in vitro model of human brain development. Here we have developed a human pluripotent stem cell-derived three-dimensional organoid culture system, termed cerebral organoids, that develop various discrete, although interdependent, brain regions. These include a cerebral cortex containing progenitor populations that organize and produce mature cortical neuron subtypes. Furthermore, cerebral organoids are shown to recapitulate features of human cortical development, namely characteristic progenitor zone organization with abundant outer radial glial stem cells. Finally, we use RNA interference and patient-specific induced pluripotent stem cells to model microcephaly, a disorder that has been difficult to recapitulate in mice. We demonstrate premature neuronal differentiation in patient organoids, a defect that could help to explain the disease phenotype. Together, these data show that three-dimensional organoids can recapitulate development and disease even in this most complex human tissue.

10 Followers
 · 
400 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Autism spectrum disorder (ASD) affects as many as 1 in 68 children and is said to be the fastest-growing serious developmental disability in the United States. There is currently no medical cure or diagnostic test for ASD. Furthermore, the U.S. Food and Drug Administration has yet to approve a single drug for the treatment of autism's core symptoms. Despite numerous genome studies and the identification of hundreds of genes that may cause or predispose children to ASD, the pathways underlying the pathogenesis of idiopathic ASD still remain elusive. Post-mortem brain samples, apart from being difficult to obtain, offer little insight into a disorder that arises through the course of development. Furthermore, ASD is a disorder of highly complex, human-specific behaviors, making it difficult to model in animals. Stem cell models of ASD can be generated by performing skin biopsies of ASD patients and then dedifferentiating these fibroblasts into human-induced pluripotent stem cells (hiPSCs). iPSCs closely resemble embryonic stem cells and retain the unique genetic signature of the ASD patient from whom they were originally derived. Differentiation of these iPSCs into neurons essentially recapitulates the ASD patient's neuronal development in a dish, allowing for a patient-specific model of ASD. Here we review our current understanding of the underlying neurobiology of ASD and how the use of stem cells can advance this understanding, possibly leading to new therapeutic avenues.
    The Yale journal of biology and medicine 03/2015; 88(1):5-16.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent breakthroughs in 3-dimensional (3D) organoid cultures for many organ systems have led to new physiologically complex in vitro models to study human development and disease. Here, we report the step-wise differentiation of human pluripotent stem cells (hPSCs) (embryonic and induced) into lung organoids. By manipulating developmental signaling pathways hPSCs generate ventral-anterior foregut spheroids, which are then expanded into human lung organoids (HLOs). HLOs consist of epithelial and mesenchymal compartments of the lung, organized with structural features similar to the native lung. HLOs possess upper airway-like epithelium with basal cells and immature ciliated cells surrounded by smooth muscle and myofibroblasts as well as an alveolar-like domain with appropriate cell types. Using RNA-sequencing, we show that HLOs are remarkably similar to human fetal lung based on global transcriptional profiles, suggesting that HLOs are an excellent model to study human lung development, maturation and disease.
    eLife Sciences 01/2015; 4. DOI:10.7554/eLife.05098 · 8.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this review, we discuss molecular and cellular mechanisms important for the function of neuronal progenitors during development, revealed by their perturbation in different cortical malformations. We focus on a class of neuronal progenitors, radial glial cells (RGCs), which are renowned for their unique morphological and behavioral characteristics, constituting a key element during the development of the mammalian cerebral cortex. We describe how the particular morphology of these cells is related to their roles in the orchestration of cortical development and their influence on other progenitor types and post-mitotic neurons. Important for disease mechanisms, we overview what is currently known about RGC cellular components, cytoskeletal mechanisms, signaling pathways and cell cycle characteristics, focusing on how defects lead to abnormal development and cortical malformation phenotypes. The multiple recent entry points from human genetics and animal models are contributing to our understanding of this important cell type. Combining data from phenotypes in the mouse reveals molecules which potentially act in common pathways. Going beyond this, we discuss future directions that may provide new data in this expanding area.
    Frontiers in Cellular Neuroscience 02/2015; 9:30. DOI:10.3389/fncel.2015.00030 · 4.18 Impact Factor

Full-text (3 Sources)

Download
94 Downloads
Available from
Sep 9, 2014
Available from