The role of the adenosinergic system in lung fibrosis

University of Siena, Italy. Electronic address: .
Pharmacological Research (Impact Factor: 4.41). 08/2013; 76. DOI: 10.1016/j.phrs.2013.08.004
Source: PubMed

ABSTRACT Adenosine (ADO) is a retaliatory metabolite that is expressed in conditions of injury or stress. During these conditions ATP is released at the extracellular level and is metabolized to adenosine. For this reason, adenosine is defined as a "danger signal" for cells and organs, in addition to its important role as homeostatic regulator. Its physiological functions are mediated through interaction with four specific transmembrane receptors called ADORA1, ADORA2A, ADORA2B and ADORA3. In the lungs of mice and humans all four adenosine receptors are expressed with different roles, having pro- and anti-inflammatory roles, determining bronchoconstriction and regulating lung inflammation and airway remodeling. Adenosine receptors can also promote differentiation of lung fibroblasts into myofibroblasts, typical of the fibrotic event. This last function suggests a potential involvement of adenosine in the fibrotic lung disease processes, which are characterized by different degrees of inflammation and fibrosis. Idiopathic pulmonary fibrosis (IPF) is the pathology with the highest degree of fibrosis and is of unknown etiology and burdened by lack of effective treatments in humans.

1 Follower
17 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: The present study was undertaken to investigate the mechanism by which adenosine receptors (ARs)-mediated the cAMP/PKA/CREB signal pathway regulates the activation of acetaldehyde-induced hepatic stellate cells (HSCs). Primary HSCs were isolated from SD rats, cultured in vitro, and activated with different concentrations of acetaldehyde at different time points. Quantitative real-time PCR and Western blotting were used to quantify both protein and mRNA levels of the four AR (A1R, A2AR, A2BR, and A3R) in rat HSCs. Selective inhibitors of PDEs and the Gi/o protein pathway, general AR agonists, and AR subtype specific agents were used to study the AR signaling. The level of cAMP was measured by radio-immunoassay, and the expression of α-SMA, collagen type I and III, PKA and p-CREB were also detected by Western blotting. Acetaldehyde could significantly promote HSC proliferation, with a maximum stimulatory effect observed at 48h after exposure to 200μM acetaldehyde. All four AR subtypes could be present in rat HSCs, and the mRNA and protein expression levels for A2AR and A1R in much greater abundance than those for A2BR and A3R. The expression of A2AR and A1R was significantly increased in acetaldehyde-induced HSCs as compared with that of control group, whereas the expression of A2BR and A3R remained unaffected by the addition of acetaldehyde. Curiously, there is coupling of A2AR to the Gs-AC signaling, as well as coupling of A1R to the Gi/o-AC signaling pathway in acetaldehyde-induced HSCs. Both the A2AR and A1R antagonists could suppress the activation of HSC, although they have opposing effects on cAMP signal transduction. These results suggested that a combination of cAMP/PKA/CREB signals via A2AR and A1R likely mediate the activation of acetaldehyde-induced HSCs, and A1R coupled to the Gi/o-AC signaling pathway may be masked by the more predominant A2AR that coupled to the Gs-AC signaling pathway.
    Biochimie 05/2015; 115. DOI:10.1016/j.biochi.2015.04.019 · 2.96 Impact Factor