Article

Site-specific N-terminal labeling of proteins using sortase-mediated reactions.

Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA.
Nature Protocol (Impact Factor: 8.36). 09/2013; 8(9):1800-7. DOI: 10.1038/nprot.2013.102
Source: PubMed

ABSTRACT This protocol describes the use of sortase-mediated reactions to label the N terminus of any given protein of interest. The sortase recognition sequence, LPXTG (for Streptococcus aureus sortase A) or LPXTA (for Staphylococcus pyogenes sortase A), can be appended to a variety of probes such as fluorophores, biotin or even to other proteins. The protein to be labeled acts as a nucleophile by attacking the intermediate formed between the probe containing the LPXTG/A motif and the sortase enzyme. If sortase, the protein of interest and a suitably functionalized label are available, the reactions usually require less than 3 h.

3 Followers
 · 
150 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: With the ever expanding possibilities to build supramolecular structures, chemists are challenged to mimic nature including the construction of artificial cells or functions thereof. Within the field of immunology, effective immunotherapy critically depends on efficient production of antigen-specific cytotoxic T-cells. Herein lies an opportunity for chemists to design and synthesize so-called artificial antigen presenting cells (aAPCs) that can promote T-cell activation and their subsequent expansion. In this review we discuss the current status of aAPC development, also focusing on developments in nanoscience which might improve future designs. As synthetic mimics of natural antigen-presenting cells, aAPCs encompass three basic signals required for T-cell activation: MHC–antigen complexes, costimulatory molecules and soluble immune modulating compounds. Both spatial and temporal organization of these signals during aAPC/T-cell contact is important for efficient T-cell activation. We discuss how signals have been incorporated in several aAPC designs, but also how physical properties such as size and shape are essential for targeting the aAPCs to T-cell rich areas in vivo.
    Chemical Science 07/2014; 5(9). DOI:10.1039/C4SC01112K · 8.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Antibody fusion to nonprotein materials such as contrast agents or radio-tracers, nano- or microparticles or small-molecule drugs is attracting major interest for molecular imaging and drug delivery. Nondirected bioconjugation techniques may impair antibody affinity, result in lower amounts of functional antibodies and generate multicomponent mixtures. We present a detailed protocol for the enzymatic bioconjugation of small recombinant antibodies to imaging particles, and we also describe the generation of and conjugation to a low-fouling capsule assembled for drug delivery from PEG and PVPON (poly(N-vinylpyrrolidone) by a layer-by-layer (LbL) technique. The single-chain variable fragment (scFv) is equipped with a short C-terminal LPETG tag and the fusion partners are functionalized with an N-terminal GGG nucleophilic group for sortase A conjugation. The LbL capsules are assembled through hydrogen bonding by depositing alkyne-modified poly(vinylpyrrolidone) and poly(methacrylic acid) layers on silica particles, followed by depositing alkyne-modified PEG. The generation of the antibodies and LbL capsules takes ∼1-2 weeks each. The conjugation and functional testing takes another 3-4 d.
    Nature Protocols 01/2015; 10(1):90-105. DOI:10.1038/nprot.2014.177 · 7.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aerolysin is a secreted bacterial toxin that perforates the plasma membrane of a target cell with lethal consequences. Previously explored native and epitope-tagged forms of the toxin do not allow site-specific modification of the mature toxin with a probe of choice. We explore sortase-mediated transpeptidation reactions (sortagging) to install fluorophores and biotin at three distinct sites in aerolysin, without impairing binding of the toxin to the cell membrane and with minimal impact on toxicity. Using a version of aerolysin labeled with different fluorophores at two distinct sites we followed the fate of the C-terminal peptide independently from the N-terminal part of the toxin, and show its loss in the course of intoxication. Making use of the biotinylated version of aerolysin, we identify mesothelin, urokinase plasminogen activator surface receptor (uPAR, CD87), glypican-1, and CD59 glycoprotein as aerolysin receptors, all predicted or known to be modified with a glycosylphosphatidylinositol anchor. The sortase-mediated reactions reported here can be readily extended to other pore forming proteins.
    PLoS ONE 10/2014; 9(10):e109883. DOI:10.1371/journal.pone.0109883 · 3.53 Impact Factor

Full-text (2 Sources)

Download
35 Downloads
Available from
Dec 8, 2014