Cyclic Nucleotide Phosphodiesterase 3A1 Protects the Heart Against Ischemia-Reperfusion Injury.

Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, NY, USA.
Journal of Molecular and Cellular Cardiology (Impact Factor: 4.66). 08/2013; 64. DOI: 10.1016/j.yjmcc.2013.08.003
Source: PubMed


Phosphodiesterase 3A (PDE3A) is a major regulator of cAMP in cardiomyocytes. PDE3 inhibitors are used for acute treatment of congestive heart failure, but are associated with increased incidence of arrhythmias and sudden death with long-term use. We previously reported that chronic PDE3A downregulation or inhibition induced myocyte apoptosis in vitro. However, the cardiac protective effect of PDE3A has not been demonstrated in vivo in disease models. In this study, we examined the role of PDE3A in regulating myocardial function and survival in vivo using genetically engineered transgenic mice with myocardial overexpression of the PDE3A1 isozyme (TG). TG mice have reduced cardiac function characterized by reduced heart rate and ejection fraction (52.5±7.8% vs. 83.9±4.7%) as well as compensatory expansion of left ventricular diameter (4.19±0.19mm vs. 3.10±0.18mm). However, there was no maladaptive increase of fibrosis and apoptosis in TG hearts compared to wild type (WT) hearts, and the survival rates also remained the same. The diminution of cardiac contractile function is very likely attributed to a decrease in beta-adrenergic receptor (β-AR) response in TG mice. Importantly, the myocardial infarct size (4.0±1.8% vs. 24.6±3.8%) and apoptotic cell number (1.3±1.0% vs. 5.6±1.5%) induced by ischemia/reperfusion (I/R) injury were significantly attenuated in TG mice. This was associated with decreased expression of inducible cAMP early repressor (ICER) and increased expression of anti-apoptotic protein BCL-2. To further verify the anti-apoptotic effects of PDE3A1, we performed in vitro apoptosis study in isolated adult TG and WT cardiomyocytes. We found that the apoptotic rates stimulated by hypoxia/reoxygenation or H2O2 were indeed significantly reduced in TG myocytes, and the differences between TG and WT myocytes were completely reversed in the presence of the PDE3 inhibitor milrinone. These together indicate that PDE3A1 negatively regulates β-AR signaling and protects against I/R injury by inhibiting cardiomyocyte apoptosis.

Download full-text


Available from: Clint Miller,
1 Follower
40 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cyclic nucleotide phosphodiesterases (PDEs) catalyse the hydrolysis of cyclic AMP and cyclic GMP, thereby regulating the intracellular concentrations of these cyclic nucleotides, their signalling pathways and, consequently, myriad biological responses in health and disease. Currently, a small number of PDE inhibitors are used clinically for treating the pathophysiological dysregulation of cyclic nucleotide signalling in several disorders, including erectile dysfunction, pulmonary hypertension, acute refractory cardiac failure, intermittent claudication and chronic obstructive pulmonary disease. However, pharmaceutical interest in PDEs has been reignited by the increasing understanding of the roles of individual PDEs in regulating the subcellular compartmentalization of specific cyclic nucleotide signalling pathways, by the structure-based design of novel specific inhibitors and by the development of more sophisticated strategies to target individual PDE variants.
    Nature Reviews Drug Discovery 04/2014; 13(4):290-314. DOI:10.1038/nrd4228 · 41.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cyclic AMP regulates a multitude of cellular responses and orchestrates a network of intracellular events. In the heart, cAMP is the main second messenger of the β-adrenergic receptor (β-AR) pathway producing positive chronotropic, inotropic, and lusitropic effects during sympathetic stimulation. Whereas short-term stimulation of β-AR/cAMP is beneficial for the heart, chronic activation of this pathway triggers pathological cardiac remodeling, which may ultimately lead to heart failure (HF). Cyclic AMP is controlled by two families of enzymes with opposite actions: adenylyl cyclases, which control cAMP production and phosphodiesterases, which control its degradation. The large number of families and isoforms of these enzymes, their different localization within the cell, and their organization in macromolecular complexes leads to a high level of compartmentation, both in space and time, of cAMP signaling in cardiac myocytes. Here, we review the expression level, molecular characteristics, functional properties, and roles of the different adenylyl cyclase and phosphodiesterase families expressed in heart muscle and the changes that occur in cardiac hypertrophy and failure.
    Pflügers Archiv - European Journal of Physiology 04/2014; 466(6). DOI:10.1007/s00424-014-1515-1 · 4.10 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Increases in cyclic AMP (cAMP) are pro-apoptotic in numerous cell types, but the mechanisms of cAMP-promoted apoptosis are poorly defined. We have used murine S49 T-lymphoma cells as a model to provide insight into these mechanisms. Increases in cAMP in wild-type (WT) S49 cells were first noted to kill these cells in the 1970 s, but only in recent years, it was shown that this occurs by the intrinsic (mitochondria-dependent) apoptotic pathway. The apoptotic response does not occur in protein kinase A-null (kin-) clonal variants of WT S49 cells and thus is mediated by protein kinase A (PKA). A second S49 clonal variant, cAMP-Deathless (D-), has PKA activity but lacks cAMP-promoted apoptosis. Apoptosis in WT S49 cells occurs many hours after cAMP/PKA-promoted G1 cell cycle arrest and involves increased expression of Bim, a pro-apoptotic member of the Bcl-2 (B-cell lymphoma-2) family. This increase in Bim expression does not occur in kin- or D- S49 cells and knockdown of Bim blunts cAMP-mediated apoptosis in WT cells. Cytotoxic T lymphocyte antigen-2 also appears to contribute to cAMP/PKA-promoted apoptosis of S49 cells. Based on time-dependent differences in gene expression between WT, D- and kin- S49 cells following incubation with 8-(4-chlorophenylthio)-cAMP, additional genes and proteins are likely involved in this apoptosis. Studies with S49 cells should reveal further insight regarding the mechanisms of cAMP/PKA-promoted cell death, including the identification of proteins that are targets to enhance (e. g., in cancer) or inhibit (e. g., cardiac failure) apoptosis in response to hormones, neurotransmitters, and drugs.
    Hormone and Metabolic Research 07/2014; 46(12). DOI:10.1055/s-0034-1384519 · 2.12 Impact Factor
Show more