Dynamic Interaction Between Membrane-Bound Full-Length Cytochrome P450 and Cytochrome b5 Observed by Solid-State NMR Spectroscopy

Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055.
Scientific Reports (Impact Factor: 5.58). 08/2013; 3:2538. DOI: 10.1038/srep02538
Source: PubMed


Microsomal monoxygenase enzymes of the cytochrome-P450 family are found in all biological kingdoms, and play a central role in the breakdown of metabolic as well as xenobiotic, toxic and 70% of the drugs in clinical use. Full-length cytochrome-b5 has been shown to be important for the catalytic activity of cytochrome-P450. Despite the significance in understanding the interactions between these two membrane-associated proteins, only limited high-resolution structural information on the full-length cytochrome-P450 and the cytochromes-b5-P450 complex is available. Here, we report a structural study on a functional ~72-kDa cytochromes-b5-P450 complex embedded in magnetically-aligned bicelles without having to freeze the sample. Functional and solid-state NMR (Nuclear Magnetic Resonance) data reveal interactions between the proteins in fluid lamellar phase bilayers. In addition, our data infer that the backbone structure and geometry of the transmembrane domain of cytochrome-b5 is not significantly altered due to its interaction with cytochrome-P450, whereas the mobility of cytochrome-b5 is considerably reduced.

Download full-text


Available from: Ayyalusamy Ramamoorthy, Mar 25, 2014
  • Source
    • "Virtually every novel biophysical and biochemical technique that has been applied to the study of P450s has involved CYP2B4, many of these occurring before the human forms of P450 were readily available [36] [37] [38] [39]. Furthermore, the enzyme is still used as a prototype in many recent P450 studies [40] [41] [42]. Thus, this enzyme provides a useful starting point from which to study the effects of EPFRs on P450-mediated metabolism. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Combustion processes generate particulate matter (PM) that can affect human health. The presence of redox-active metals and aromatic hydrocarbons in the post-combustion regions results in the formation of air-stable, environmentally persistent free radicals (EPFRs) on entrained particles. Exposure to EPFRs has been shown to negatively influence pulmonary and cardiovascular functions. Cytochromes P450 (P450/CYP) are endoplasmic reticulum resident proteins that are responsible for the metabolism of foreign compounds. Previously, it was shown that model EPFRs, generated by exposure of silica containing 5% copper oxide (CuO-Si) to either dicholorobenzene (DCB230) or 2-monochlorophenol (MCP230) at ≥ 230°C, inhibited six forms of P450 in rat liver microsomes (Toxicol. Appl. Pharmacol. (2014) 277:200-209). In this study, the inhibition of P450 by MCP230 was examined in more detail by measuring its effect on the rate of metabolism of 7-ethoxy-4-trifluoromethylcoumarin (7EFC) and 7-benzyloxyresorufin (7BRF) by the purified, reconstituted CYP2B4 system. MCP230 inhibited the CYP2B4-mediated metabolism of 7EFC at least 10-fold more potently than non-EPFR controls (CuO-Si, silica, and silica generated from heating silica and MCP at 50°C, so that EPFRs were not formed (MCP50)). The inhibition by EPFRs was specific for the P450 and did not affect the ability of the redox partner, P450 reductase (CPR) from reducing cytochrome c. All of the PM inhibited CYP2B4-mediated metabolism noncompetitively with respect to substrate. When CYP2B4-mediated metabolism of 7EFC was measured as a function of the CPR concentration, the mechanism of inhibition was competitive. EPFRs likely inhibit CYP2B4-mediated substrate metabolism by physically disrupting the CPR·P450 complex. Copyright © 2015. Published by Elsevier Inc.
    Biochemical pharmacology 03/2015; 95(2). DOI:10.1016/j.bcp.2015.03.012 · 5.01 Impact Factor
  • Source
    • "INEPT and refocused-INEPT (RINEPT) pulse sequences have been frequently utilized in the development of numerous sophisticated RF pulse sequences for solution NMR studies [53], and their theoretical analyses are well understood [54] [55]. RINEPT experiments are also utilized in solid-state NMR studies on oriented lipid bilayers containing a membrane protein [56] [57]. The presence of strong 1 H– 1 H dipolar couplings in rigid solids often results in the failure of RINEPT polarization transfer from protons due to the fast decay of proton transverse magnetization, which necessitates the use of a combination of a homonuclear dipolar decoupling sequence and MAS [10] [58]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The refocused insensitive nuclei enhanced by polarization transfer (RINEPT) technique is commonly used for heteronuclear polarization transfer in solution and solid-state NMR spectroscopy. Suppression of dipolar couplings, either by fast molecular motions in solution or by a combination of MAS and multiple pulse sequences in solids, enables the polarization transfer via scalar couplings. However, the presence of unsuppressed dipolar couplings could alter the functioning of RINEPT, particularly under fast/ultrafast MAS conditions. In this study, we demonstrate, through experiments on rigid solids complemented by numerical simulations, that the polarization transfer efficiency of RINEPT is dependent on the MAS frequency. In addition, we show that heteronuclear dipolar coupling is the dominant factor in the polarization transfer, which is strengthened by the presence of (1)H-(1)H dipolar couplings. In fact, the simultaneous presence of homonuclear and heteronuclear dipolar couplings is the premise for the polarization transfer by RINEPT, whereas the scalar coupling plays an insignificant role under ultrafast MAS conditions on rigid solids. Our results additionally reveal that the polarization transfer efficiency decreases with the increasing duration of RF pulses used in the RINEPT sequence.
    Journal of Magnetic Resonance 04/2014; 243C:85-92. DOI:10.1016/j.jmr.2014.03.012 · 2.51 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: It has been well realized that the dependence of chemical shift anisotropy (CSA) tensors on the amino acid sequence, secondary structure, dynamics and electrostatic interactions can be utilized in the structural and dynamic studies of proteins by NMR spectroscopy. In addition, CSA tensors could also be utilized to measure the structural interactions between proteins in a protein-protein complex. To this end, here we report the experimentally measured backbone amide-15N CSA tensors for a membrane-bound 16.7-kDa full-length rabbit cytochrome-b5 (cytb5), in complexation with a 55.8-kDa microsomal rabbit cytochrome P450 2B4 (cytP4502B4). The 15N-CSAs, determined using the 15N CSA/15N-1H dipolar coupling transverse cross-correlated rates, for free cytb5 are compared with that for the cytb5 bound to cytP4502B4. An overall increase in backbone amide-15N transverse cross-correlated rates for the cytb5 residues in the cytb5-cytP450 complex was observed as compared to the free cytb5 residues. Due to fast spin-spin relaxation (T2) and subsequent broadening of the signals in the complex, we were able to measure amide-15N CSAs only for 48 residues of cytb5 as compared to 84 residues of free cytb5. We observed a change in 15N CSA for most residues of cytb5 in the complex, when compared to free cytb5, suggesting a dynamic interaction between the oppositely charged surfaces of anionic cytb5 and cationic cytP450. The mean values of 15N CSA determined for residues in helical, sheet and turn regions of cytb5 in the complex are -184.5, -146.8, and -146.2 ppm, respectively, with an overall average value of -165.5 ppm (excluding the values from residues in more flexible termini). The measured CSA value for residues in helical conformation is slightly larger as compared to previously reported values. This may be attributed to the paramagnetic effect from Fe(III) of the heme in cytb5, which is similar to our previously reported values for the free cytb5.
    The Journal of Physical Chemistry B 10/2013; 117(44). DOI:10.1021/jp4086206 · 3.30 Impact Factor
Show more