A platform for discovery: The University of Pennsylvania Integrated Neurodegenerative Disease Biobank

Department of Pathology & Laboratory Medicine, Institute on Aging, Center for Neurodegenerative Disease Research, Philadelphia, Pennsylvania, USA.
Alzheimer's & dementia: the journal of the Alzheimer's Association (Impact Factor: 12.41). 08/2013; 10(4). DOI: 10.1016/j.jalz.2013.06.003
Source: PubMed


Neurodegenerative diseases (NDs) are defined by the accumulation of abnormal protein deposits in the central nervous system (CNS), and only neuropathological examination enables a definitive diagnosis. Brain banks and their associated scientific programs have shaped the actual knowledge of NDs, identifying and characterizing the CNS deposits that define new diseases, formulating staging schemes, and establishing correlations between neuropathological changes and clinical features. However, brain banks have evolved to accommodate the banking of biofluids as well as DNA and RNA samples. Moreover, the value of biobanks is greatly enhanced if they link all the multidimensional clinical and laboratory information of each case, which is accomplished, optimally, using systematic and standardized operating procedures, and in the framework of multidisciplinary teams with the support of a flexible and user-friendly database system that facilitates the sharing of information of all the teams in the network. We describe a biobanking system that is a platform for discovery research at the Center for Neurodegenerative Disease Research at the University of Pennsylvania.

23 Reads
  • Source
    • "Human CNS tissues from the superior temporal cortex (FTLD-TDP subtypes A-D) and spinal cord (ALS) (one patient each) were examined to evaluate the reactivity of TDP-43 MAbs in pathological aggregations and neuronal nuclei (for demographic details please see Additional file 1: Table S1). Neuropathological examination of human cases was performed as described previously [22] using current neuropathological criteria for the diagnosis of FTLD-TDP and ALS [23,24]. The brain and spinal cord tissues were obtained at autopsy and processed following standard established protocol [22]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The RNA/DNA-binding protein, TDP-43, is the key component of ubiquitinated inclusions characteristic of amyotrophic lateral sclerosis (ALS) and the majority of frontotemporal lobar degeneration (FTLD-TDP) referred to collectively as TDP-43 proteinopathies. To further elucidate mechanisms of pathological TDP-43 processing and identify TDP-43 epitopes that could be useful as potential biomarkers of TDP-43 proteinopathies, we developed a panel of novel monoclonal antibodies (MAbs) directed at regions extending across the length of TDP-43. Here, we confirm previous observations that there is no or minimal accumulation of TDP-43 N-terminal domains in neocortical inclusions in human TDP-43 proteinopathy tissues and we identify a subset of these MAbs that are specific for human versus mouse TDP-43. Notably, one of these MAbs recognized an epitope that preferentially detected pathological TDP-43 inclusions with negligible reactivity for normal nuclear TDP-43 resembling anti-phospho-TDP-43 specific antibodies that only bind pathological TDP-43. Hence, we infer that this new MAb recognizes a phosphorylation independent but disease-specific pathologic conformation in abnormal TDP-43. These data suggest that the novel MAbs reported here will be useful for patient-oriented research as well as for studies of animal and cell-based models of TDP-43 proteinopathies including ALS and FTLD-TDP.
    03/2014; 2(1):33. DOI:10.1186/2051-5960-2-33
  • Source
    • ") as reported previously [20]. Written informed consent was obtained for participation in these studies, which was approved by the University of Pennsylvania IRB. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The primary aims of this work were to: 1) establish a calibrator surrogate matrix for quantification of amyloid-β (Aβ)42 in human cerebrospinal fluid (CSF) and preparation of quality control samples for LC-MS-MS methodology, 2) validate analytical performance of the assay, and 3) evaluate its diagnostic utility and compare it with the AlzBio3 immunoassay. The analytical methodology was based on a 2D-UPLC-MS-MS platform. Sample pretreatment used 5 M guanidine hydrochloride and extraction on μElution SPE columns as previously described. A column cleaning procedure involved gradual removal of aqueous solvents by acetonitrile assured consistent long-term chromatography performance. Receiver-operator characteristic (ROC) curve and correlation analyses evaluated the diagnostic utility of UPLC-MS-MS compared to AlzBio3 immunoassay for detection of Alzheimer's disease (AD). The surrogate matrix, artificial CSF containing 4 mg/mL of BSA, provides linear and reproducible calibration comparable to human pooled CSF as calibration matrix. Appropriate cleaning of the trapping and analytical columns provided every-day, trouble-free runs. Analyses of CSF Aβ42 showed that UPLC-MS-MS distinguished neuropathologically-diagnosed AD subjects from healthy controls with at least equivalent diagnostic utility to AlzBio3. Comparison of ROC curves for these two assays showed no statistically significant difference (p = 0.2229). Linear regression analysis of Aβ42 concentrations measured by this mass spectrometry-based method compared to the AlzBio3 immunoassay showed significantly higher but highly correlated results. In conclusion, the newly established surrogate matrix for 2D-UPLC-MS-MS measurement of Aβ42 provides selective, reproducible, and accurate results. The documented analytical performance and diagnostic performance for AD versus controls supports consideration as a candidate reference method.
    Journal of Alzheimer's disease: JAD 03/2014; 41(2). DOI:10.3233/JAD-132489 · 4.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: An understanding of the anatomic distributions of major neurodegenerative disease lesions is important to appreciate the differential clinical profiles of these disorders and to serve as neuropathological standards for emerging molecular neuroimaging methods. To address these issues, here we present a comparative survey of the topographical distribution of the defining molecular neuropathological lesions among ten neurodegenerative diseases from a large and uniformly assessed brain collection. Ratings of pathological severity in sixteen brain regions from 671 cases with diverse neurodegenerative diseases were summarized and analyzed. These included: a) amyloid-β and tau lesions in Alzheimer's disease, b) tau lesions in three other tauopathies including Pick's disease, progressive supranuclear palsy and corticobasal degeneration, c) α-synuclein inclusion ratings in four synucleinopathies including Parkinson's disease, Parkinson's disease with dementia, dementia with Lewy bodies and multiple system atrophy, and d) TDP-43 lesions in two TDP-43 proteinopathies, including frontotemporal lobar degeneration associated with TDP-43 and amyotrophic lateral sclerosis. The data presented graphically and topographically confirm and extend previous pathological anatomic descriptions and statistical comparisons highlight the lesion distributions that either overlap or distinguish the diseases in each molecular disease category. J. Comp. Neurol., 2013. © 2013 Wiley Periodicals, Inc.
    The Journal of Comparative Neurology 12/2013; 521(18). DOI:10.1002/cne.23430 · 3.23 Impact Factor
Show more