A platform for discovery: The University of Pennsylvania Integrated Neurodegenerative Disease Biobank.

Department of Pathology & Laboratory Medicine, Institute on Aging, Center for Neurodegenerative Disease Research, Philadelphia, Pennsylvania, USA.
Alzheimer's & dementia: the journal of the Alzheimer's Association (Impact Factor: 17.47). 08/2013; DOI: 10.1016/j.jalz.2013.06.003
Source: PubMed

ABSTRACT Neurodegenerative diseases (NDs) are defined by the accumulation of abnormal protein deposits in the central nervous system (CNS), and only neuropathological examination enables a definitive diagnosis. Brain banks and their associated scientific programs have shaped the actual knowledge of NDs, identifying and characterizing the CNS deposits that define new diseases, formulating staging schemes, and establishing correlations between neuropathological changes and clinical features. However, brain banks have evolved to accommodate the banking of biofluids as well as DNA and RNA samples. Moreover, the value of biobanks is greatly enhanced if they link all the multidimensional clinical and laboratory information of each case, which is accomplished, optimally, using systematic and standardized operating procedures, and in the framework of multidisciplinary teams with the support of a flexible and user-friendly database system that facilitates the sharing of information of all the teams in the network. We describe a biobanking system that is a platform for discovery research at the Center for Neurodegenerative Disease Research at the University of Pennsylvania.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The discovery of novel plasma-based biomarkers could lead to new approaches in the treatment of Parkinson's disease (PD). Here, we explore the role of plasma apolipoprotein A1 (ApoA1) as a risk marker for PD and evaluate the influence of APOA1 promoter variation on plasma ApoA1 levels. Plasma ApoA1 and the single-nucleotide polymorphism, rs670, were assayed in a discovery cohort (cohort 1) of 301 PD patients, 80 normal controls (NCs), and 165 subjects with other neurodegenerative diseases, as well as a cohort (cohort 2) of 158 PD patients from a second clinical site. Additionally, rs670 was genotyped in a third cohort of 1,494 PD and 925 NC subjects from both clinical sites. Compared to both normal and disease controls, PD patients have lower plasma ApoA1 (P < 0.001 for both comparisons). Moreover, in PD patients, plasma ApoA1 levels are correlated with genotype at the APOA1 promoter polymorphism, rs670. Specifically, lower plasma ApoA1 levels were found in rs670 major allele (G) homozygotes in both cohort 1 (P = 0.009) and in a replication cohort (cohort 2; n = 158 PD patients; P = 0.024). Finally, evaluating rs670 genotype frequencies in 1,930 PD cases versus 997 NCs, the rs670 GG genotype shows a trend toward association (odds ratio: 1.1; P = 0.10) with PD. Our results are compatible with a model whereby circulating ApoA1 levels may be useful in risk-stratifying subjects for the development of PD, with higher ApoA1 levels suggesting relative protection. Future studies evaluating modulation of ApoA1 as a novel therapeutic strategy in PD are warranted. © 2014 International Parkinson and Movement Disorder Society
    Movement Disorders 09/2014; 30(6). DOI:10.1002/mds.26022 · 5.63 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To determine the prognostic utility of tauopathy-associated single nucleotide polymorphisms (SNPs) in sporadic behavioral-variant frontotemporal dementia (bvFTD).METHODS: Eighty-one patients with sporadic bvFTD were genotyped for tauopathy-associated SNPs at rs8070723 (microtubule-associated protein tau [MAPT]) and rs1768208 (myelin-associated oligodendrocyte basic protein [MOBP]). We performed a retrospective case-control study comparing age at onset and disease duration between carriers of ≥1 polymorphism allele and noncarriers for these SNPs. Subanalyses were performed for autopsied subgroups with tauopathy (n = 20) and TDP-43 proteinopathy (n = 12). To identify a potential biological basis for disease duration, neuroimaging measures of white matter integrity were evaluated (n = 37).RESULTS: Carriers of risk allele (T) in rs1768208 (i.e., MOBP RA+) had a shorter median disease duration (TC/TT = 5.5 years, CC = 9.5 years; p = 0.02). This was also found in the subset of cases with autopsy-confirmed tauopathies (p = 0.04) but not with TDP-43 proteinopathies (p > 0.1). By comparison, polymorphisms at rs8070723 (MAPT) had no effect on disease duration (p > 0.1), although carriers of protective allele (G) in rs8070723 had a younger median age at onset (AG/GG = 54.5 years, AA = 58 years; p < 0.01). MOBP RA+ patients had increased radial diffusivity in the superior corona radiata and midbrain, and reduced fractional anisotropy in the superior corona radiata as well as superior and inferior longitudinal fasciculi compared with noncarriers (p < 0.01).CONCLUSIONS: The rs1768208 risk polymorphism in MOBP may have prognostic value in bvFTD. MOBP RA+ patients have more severe white matter degeneration in bvFTD that may contribute to shorter disease duration. Future studies are needed to help confirm these findings.
    Neurology 07/2014; 83(6). DOI:10.1212/WNL.0000000000000668 · 8.30 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS) are 2 neurodegenerative disorders that share clinical, genetic, and neuropathologic features. The presence of abnormal expansions of GGGGCC repeats (G4C2 repeats) in a noncoding region of the Chromosome 9 open reading frame 72 (C9orf72) gene is the major genetic cause of both FTLD and ALS. Transcribed G4C2 repeats can form nuclear RNA foci and recruit RNA-binding proteins, thereby inhibiting their normal function. Moreover, through a repeat-associated non-ATG translation mechanism, G4C2 repeats translation leads to dipeptide-repeat protein aggregation in the cytoplasm of neurons. Here, we identify Drosha protein as a new component of these dipeptide-repeat aggregates. In C9orf72 mutation cases of FTLD-TDP (c9FTLD-TDP) and ALS (c9ALS), but not in FTLD or ALS cases without C9orf72 mutation, Drosha is mislocalized to form neuronal cytoplasmic inclusions in the hippocampus, frontal cortex, and cerebellum. Further characterization of Drosha-positive neuronal cytoplasmic inclusions in the hippocampus, frontal cortex, and cerebellum revealed colocalization with p62 and ubiquilin-2, 2 pathognomonic signatures of c9FTLD-TDP and c9ALS cases; however, Drosha inclusions rarely colocalized with TDP-43 pathology. We conclude that Drosha may play a unique pathogenic role in the onset or progression of FTLD-TDP/ALS in patients with the C9orf72 mutation.This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License, where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially.
    Journal of Neuropathology and Experimental Neurology 03/2015; 74(4). DOI:10.1097/NEN.0000000000000182 · 4.37 Impact Factor