Article

Isolation and mutational analysis of circulating tumor cells from lung cancer patients with magnetic sifters and biochips

Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA.
Lab on a Chip (Impact Factor: 5.75). 08/2013; 14(1). DOI: 10.1039/c3lc50580d
Source: PubMed

ABSTRACT Detection and characterization of circulating tumor cells (CTCs) may reveal insights into the diagnosis and treatment of malignant disease. Technologies for isolating CTCs developed thus far suffer from one or more limitations, such as low throughput, inability to release captured cells, and reliance on expensive instrumentation for enrichment or subsequent characterization. We report a continuing development of a magnetic separation device, the magnetic sifter, which is a miniature microfluidic chip with a dense array of magnetic pores. It offers high efficiency capture of tumor cells, labeled with magnetic nanoparticles, from whole blood with high throughput and efficient release of captured cells. For subsequent characterization of CTCs, an assay, using a protein chip with giant magnetoresistive nanosensors, has been implemented for mutational analysis of CTCs enriched with the magnetic sifter. The use of these magnetic technologies, which are separate devices, may lead the way to routine preparation and characterization of "liquid biopsies" from cancer patients.

4 Followers
 · 
130 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Micro-magnetic sensing and actuation have emerged as powerful tools for the diagnosis and monitoring of cancer. These technologies can be miniaturized and integrated onto compact, microfluidic platforms, enabling molecular diagnostics to be performed in practical clinical settings. Molecular targets tagged with magnetic nanoparticles can be detected with high sensitivity directly in unprocessed clinical samples (e.g. blood, sputum) due to the inherently negligible magnetic susceptibility of biological material. As a result, magnetic microchip-based diagnostics have been applied with great success to the isolation and detection of rare cells and the measurement of sparse soluble proteins. In this paper, we review recent advances in microchip-based detection of magnetically labeled biomarkers and their translation to clinical applications in cancer.
    Advanced drug delivery reviews 10/2013; DOI:10.1016/j.addr.2013.09.013 · 12.71 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Circulating tumor cells (CTCs) are rare cancer cells released from tumors into the bloodstream that are thought to have a key role in cancer metastasis. The presence of CTCs has been associated with worse prognosis in several major cancer types, including breast, prostate and colorectal cancer. There is considerable interest in CTC research and technologies for their potential use as cancer biomarkers that may enhance cancer diagnosis and prognosis, facilitate drug development, and improve the treatment of cancer patients. This review provides an update on recent progress in CTC isolation and molecular characterization technologies. Furthermore, the review covers significant advances and limitations in the clinical applications of CTC-based assays for cancer prognosis, response to anti-cancer therapies, and exploratory studies in biomarkers predictive of sensitivity and resistance to cancer therapies.
    Pharmacology [?] Therapeutics 10/2013; 141(2). DOI:10.1016/j.pharmthera.2013.10.004 · 7.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rare cells are low-abundance cells in a much larger population of background cells. Conventional benchtop techniques have limited capabilities to isolate and analyze rare cells because of their generally low selectivity and significant sample loss. Recent rapid advances in microfluidics have been providing robust solutions to the challenges in the isolation and analysis of rare cells. In addition to the apparent performance enhancements resulting in higher efficiencies and sensitivity levels, microfluidics provides other advanced features such as simpler handling of small sample volumes and multiplexing capabilities for high-throughput processing. All of these advantages make microfluidics an excellent platform to deal with the transport, isolation, and analysis of rare cells. Various cellular biomarkers, including physical properties, dielectric properties, as well as immunoaffinities, have been explored for isolating rare cells. In this Focus article, we discuss the design considerations of representative microfluidic devices for rare cell isolation and analysis. Examples from recently published works are discussed to highlight the advantages and limitations of the different techniques. Various applications of these techniques are then introduced. Finally, a perspective on the development trends and promising research directions in this field are proposed.
    Lab on a Chip 01/2014; 14(4). DOI:10.1039/c3lc90136j · 5.75 Impact Factor
Show more

Preview

Download
0 Downloads
Available from