The Prognostic Significance of IRF8 Transcripts in Adult Patients with Acute Myeloid Leukemia

UT MD Anderson Cancer Center, United States of America
PLoS ONE (Impact Factor: 3.23). 08/2013; 8(8):e70812. DOI: 10.1371/journal.pone.0070812
Source: PubMed


Interferon regulatory factor 8 (IRF8) is a transcription factor that plays a critical role in normal hematopoiesis, such that disruption of IRF8 activity promotes leukemogenesis. We and others have identified aberrant expression of IRF8 transcripts, including novel splice variants, in acute myeloid leukemia (AML), but studies have not investigated the prognostic significance of these transcripts. Therefore, we developed and optimized quantitative expression assays for both, the wild type, or the reference sequence (WT-IRF8) and novel splice variants (SV-IRF8). These assays were used to quantify IRF8 transcript levels in 194 adult patients with AML, and multivariate analyses investigated the prognostic significance of these expression levels. After adjusting for known prognostic factors, expression levels of WT- or SV-IRF8 transcripts were not significantly associated with complete responses or overall survival. However, increased expression of WT-IRF8 was associated with decreased relapse-free survival (RFS) in both univariate (P = 0.010) and multivariate (P = 0.019) analyses. Similarly, increased expression of SV-IRF8 was associated with a decreased RFS (univariate, P = 0.026 and multivariate, P = 0.021). These studies show for the first time that WT-IRF8 and SV-IRF8 are independent adverse prognostic factors for patients with AML. Additional studies are planned to examine the prognostic significance of IRF8 transcripts in other populations of AML patients.


Available from: Era L Pogosova-Agadjanyan, May 22, 2014
  • [Show abstract] [Hide abstract]
    ABSTRACT: During hematopoiesis, cells originating from the same stem cell reservoir differentiate into distinct cell types. The mechanisms enabling common progenitors to differentiate into alternative cell fates are not fully understood. Here, we identify cell-fate-determining transcription factors (TFs) governing dendritic cell (DC) development by annotating the enhancer landscapes of the DC lineage. Combining these analyses with detailed overexpression, knockdown, and ChIP-Seq studies, we show that Irf8 functions as a plasmacytoid DC epigenetic and fate-determining TF, regulating massive, cell-specific chromatin changes in thousands of pDC enhancers. Importantly, Irf8 forms a negative feedback loop with Cebpb, a monocyte-derived DC epigenetic fate-determining TF. We show that using this circuit logic, a pulse of TF expression can stably define epigenetic and transcriptional states, regardless of the microenvironment. More broadly, our study proposes a general paradigm that allows closely related cells with a similar set of signal-dependent factors to generate differential and persistent enhancer landscapes.
    Molecular Cell 11/2014; 56(6). DOI:10.1016/j.molcel.2014.10.014 · 14.02 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Interferon regulatory factor 8 (Irf8) is critical for mammalian macrophage development and innate immunity, but its role in teleost myelopoiesis remains incompletely understood. In particular, genetic tools to analyze the role of Irf8 in zebrafish macrophage development at larval and adult stages are lacking. We generated irf8 null mutants in zebrafish using TALEN-mediated targeting. Our analysis defines different requirements for irf8 at different stages. irf8 is required for formation of all macrophages during primitive and transient definitive hematopoiesis, but not during adult-phase definitive hematopoiesis starting at 5-6 days postfertilization. At early stages, irf8 mutants have excess neutrophils and excess cell death in pu.1-expressing myeloid cells. Macrophage fates were recovered in irf8 mutants after wildtype irf8 expression in neutrophil and macrophage lineages, suggesting that irf8 regulates macrophage specification and survival. In juvenile irf8 mutant fish, mature macrophages are present, but at numbers significantly reduced compared to wildtype, indicating an ongoing requirement for irf8 after embryogenesis. As development progresses, tissue macrophages become apparent in zebrafish irf8 mutants, with the possible exception of microglia. Our study defines distinct requirement for irf8 in myelopoiesis before and after transition to the adult hematopoietic system.
    PLoS ONE 01/2015; 10(1):e0117513. DOI:10.1371/journal.pone.0117513 · 3.23 Impact Factor