Article

A nanoparticle formulation that selectively transfects metastatic tumors in mice

Ludwig Center for Cancer Genetics and Therapeutics, Howard Hughes Medical Institute, and Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 08/2013; 110(36). DOI: 10.1073/pnas.1313330110
Source: PubMed

ABSTRACT Nanoparticle gene therapy holds great promise for the treatment of malignant disease in light of the large number of potent, tumor-specific therapeutic payloads potentially available for delivery. To be effective, gene therapy vehicles must be able to deliver their therapeutic payloads to metastatic lesions after systemic administration. Here we describe nanoparticles comprised of a core of high molecular weight linear polyethylenimine (LPEI) complexed with DNA and surrounded by a shell of polyethyleneglycol-modified (PEGylated) low molecular weight LPEI. Compared with a state-of-the-art commercially available in vivo gene delivery formulation, i.v. delivery of the core/PEGylated shell (CPS) nanoparticles provided more than a 16,000-fold increase in the ratio of tumor to nontumor transfection. The vast majority of examined liver and lung metastases derived from a colorectal cancer cell line showed transgene expression after i.v. CPS injection in an animal model of metastasis. Histological examination of tissues from transfected mice revealed that the CPS nanoparticles selectively transfected neoplastic cells rather than stromal cells within primary and metastatic tumors. However, only a small fraction of neoplastic cells (<1%) expressed the transgene, and the extent of delivery varied with the tumor cell line, tumor site, and host mouse strain used. Our results demonstrate that these CPS nanoparticles offer substantial advantages over previously described formulations for in vivo nanoparticle gene therapeutics. At the same time, they illustrate that major increases in the effectiveness of such approaches are needed for utility in patients with metastatic cancer.

0 Followers
 · 
107 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Increasing the molecular weight of the core of a polymeric nanoparticle significantly improves its use in gene delivery.
    Nature Nanotechnology 11/2013; 8(11):805-6. DOI:10.1038/nnano.2013.234 · 33.27 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Polyethylenimines (PEIs) have proven to be highly efficient and versatile agents for nucleic acid delivery in vitro and in vivo. Despite the low biodegradability of these polymers, they have been used in several clinical trials and the results suggest that the nucleic acid/PEI complexes have a good safety profile. The high transfection efficiency of PEIs probably relies on the fact that these polymers possess a stock of amines that can undergo protonation during the acidification of endosomes. This buffering capacity likely enhances endosomal escape of the polyplexes through the "proton sponge" effect. PEIs have also attracted great interest because the presence of many amino groups allow for easy chemical modifications or conjugation of targeting moieties and hydrophilic polymers. In the present chapter, we summarize and discuss the mechanism of PEI-mediated transfection, as well as the recent developments in PEI-mediated DNA, antisense oligonucleotide, and siRNA delivery.
    Advances in genetics 01/2014; 88:263-88. DOI:10.1016/B978-0-12-800148-6.00009-2 · 5.41 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Magnetic nanoparticles (MNPs) are a new and promising addition to the spectrum of biomedicines. Their promise revolves around the broad versatility and biocompatibility of the MNPs and their unique physicochemical properties. Guided by applied external magnetic fields, MNPs represent a cutting-edge tool designed to improve diagnosis and therapy of a broad range of inflammatory, infectious, genetic and degenerative diseases. Magnetic hyperthermia, targeted drug and gene delivery, cell tracking, protein bioseparation and tissue engineering are but a few applications being developed for MNPs. MNPs toxicities linked to shape, size and surface chemistry are real and must be addressed before clinical use is realized. This article presents both the promise and perils of this new nanotechnology, with an eye towards opportunity in translational medical science.
    Nanomedicine 03/2014; DOI:10.2217/nnm.14.5 · 5.82 Impact Factor