Measuring α4β2* nicotinic acetylcholine receptor density in vivo with [18F]nifene PET in the nonhuman primate

1] Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA [2] Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, Madison, Wisconsin, USA.
Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism (Impact Factor: 5.41). 08/2013; 33(11). DOI: 10.1038/jcbfm.2013.136
Source: PubMed


[(18)F]Nifene is an agonist PET radioligand developed to image α4β2* nicotinic acetylcholine receptors (nAChRs). This work aims to quantify the receptor density (Bmax) of α4β2* nAChRs and the in vivo (apparent) dissociation constant (KDapp) of [(18)F]nifene. Multiple-injection [(18)F]nifene experiments with varying cold nifene masses were conducted on four rhesus monkeys with a microPET P4 scanner. Compartment modeling techniques were used to estimate regional Bmax values and a global value of KDapp. The fast kinetic properties of [(18)F]nifene also permitted alternative estimates of Bmax and KDapp at transient equilibrium with the same experimental data using Scatchard-like methodologies. Averaged across subjects, the compartment modeling analysis yielded Bmax values of 4.8±1.4, 4.3±1.0, 1.2±0.4, and 1.2±0.3 pmol/mL in the regions of antereoventral thalamus, lateral geniculate, frontal cortex, and subiculum, respectively. The KDapp of nifene was 2.4±0.3 pmol/mL. The Scatchard analysis based on graphical evaluation of the data after transient equilibrium yielded Bmax estimations comparable to the modeling results with a positive bias of 28%. These findings show the utility of [(18)F]nifene for measuring α4β2* nAChR Bmax in vivo in the rhesus monkey with a single PET experiment.Journal of Cerebral Blood Flow & Metabolism advance online publication, 14 August 2013; doi:10.1038/jcbfm.2013.136.

Download full-text


Available from: Jogeshwar Mukherjee, Aug 13, 2015
14 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: A major pathophysiological role for the dopaminergic system in Tourette's syndrome (TS) has been presumed ever since the discovery that dopamine-receptor antagonists can alleviate tics. Especially recent molecular genetic studies, functional imaging studies, and some rare postmortem studies have given more and more hints that other neurotransmitter systems are involved as well. Dysfunction in the dopamine metabolism-in particular during early development-might lead to counter-regulations in the other systems or vice versa. This chapter will give an overview of the studies that prove the involvement of other neurotransmitter systems such as the major monoaminergic neurotransmitters norepinephrine, serotonin, and histamine; the most important excitatory neurotransmitter, the amino acid glutamate; the major inhibitory neurotransmitter y-aminobutyric acid, as well as acetylcholine, endocannabinoid, corticoid; and others. These studies will hopefully lead to fundamental advances in the psychopharmacological treatment of TS. While tic disorders have been previously treated mainly with dopamine antagonists, some authors already favor alpha-agonists. Clinical trials with glutamate agonists and antagonists and compounds influencing the histaminergic system are currently being conducted. Since the different neurotransmitter systems consist of several receptor subtypes which might mediate different effects on locomotor activity, patients with TS may respond differentially to selective agonists or antagonists. Effects of agonistic or antagonistic compounds on tic symptoms might also be dose dependent. Further studies will lead to a broader spectrum of psychopharmacological treatment options in TS.
    International Review of Neurobiology 12/2013; 112:95-130. DOI:10.1016/B978-0-12-411546-0.00004-4 · 1.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The thalamus relays sensory information to the cortex. Oscillatory activities of the thalamocortical network are modulated by monoamines, acetylcholine, and adenosine, and could be the key features characteristic of different vigilance states. Although the thalamus is almost always subjective to the actions of more than just one neuromodulator, reports on the modulatory effect of coexisting neuromodulators on thalamic synaptic transmission are unexpectedly scarce. We found that either monoamine or adenosine decreases retinothalamic synaptic strength and short-term depression, whereas cholinergic modulators generally enhance postsynaptic response to presynaptic activity. However, combinations of different modulators tend to produce non-additive effect, not predictable based on the action of one single modulator. Acetylcholine, acting via nicotinic receptors, can interact with either serotonin or adenosine to abolish most short-term synaptic depression. Moreover, the coexistence of adenosine and monoamine, with or without acetylcholine, results in robustly decreased synaptic strength and transforms short-term synaptic depression to facilitation. These findings are consistent with a view that acetylcholine is essential for an “enriched” sensory flow through the thalamus, and the flow is trimmed down by concomitant monoamine or adenosine (presumably for the wakefulness and rapid-eye movement, or REM, sleep state, respectively). In contrast, concomitant adenosine and monoamine would lead to a markedly “deprived” (and high-pass filtered) sensory flow, and thus the dramatic decrease of monoamine may constitute the essential demarcation between non-REM and REM sleep. The collective actions of different neuromodulators on thalamic synaptic transmission thus could be essential for the understanding of network responsiveness in different vigilance states.
    Frontiers in Cellular Neuroscience 03/2015; 9. DOI:10.3389/fncel.2015.00060 · 4.29 Impact Factor