Article

Human-relevant levels of added sugar consumption increase female mortality and lower male fitness in mice.

Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, Utah 84112, USA.
Nature Communications (Impact Factor: 10.74). 08/2013; 4:2245. DOI: 10.1038/ncomms3245
Source: PubMed

ABSTRACT Consumption of added sugar has increased over recent decades and is correlated with numerous diseases. Rodent models have elucidated mechanisms of toxicity, but only at concentrations beyond typical human exposure. Here we show that comparatively low levels of added sugar consumption have substantial negative effects on mouse survival, competitive ability, and reproduction. Using Organismal Performance Assays-in which mice fed human-relevant concentrations of added sugar (25% kcal from a mixture of fructose and glucose, modeling high fructose corn syrup) and control mice compete in seminatural enclosures for territories, resources and mates-we demonstrate that fructose/glucose-fed females experience a twofold increase in mortality while fructose/glucose-fed males control 26% fewer territories and produce 25% less offspring. These findings represent the lowest level of sugar consumption shown to adversely affect mammalian health. Clinical defects of fructose/glucose-fed mice were decreased glucose clearance and increased fasting cholesterol. Our data highlight that physiological adversity can exist when clinical disruptions are minor, and suggest that Organismal Performance Assays represent a promising technique for unmasking negative effects of toxicants.

0 Bookmarks
 · 
39 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent analyses have identified positively selected loci that explain differences in immune responses, body forms, and adaptations to extreme climates, but variants that describe adaptations in energy-balance regulation remain underexplored. To identify variants that confer adaptations in energy-balance regulation, we explored the evolutionary history and functional associations of candidate variants in 207 genes. We screened single nucleotide polymorphisms in genes that had been associated with energy-balance regulation for unusual genetic patterns in human populations, followed by studying associations among selected variants and serum levels of GIP, insulin, and C-peptide in pregnant women after an oral glucose tolerance test. Our analysis indicated that 5' variants in CDKAL1, CYB5R4, GAD2, and PPARG are marked with statistically significant signals of gene-environment interactions. Importantly, studies of serum hormone levels showed that variants in CDKAL1 are associated with glucose-induced GIP and insulin responses (p<0.05). On the other hand, a GAD2 variant exhibited a significant association with glucose-induced C-peptide response. In addition, simulation analysis indicated that a type 2 diabetes risk variant in CDKAL1 (rs7754840) was selected in East Asians ∼6,900 years ago. Taken together, these data indicated that variants in CDKAL1 and GAD2 were targets of prior environmental selection. Because the selection of the CDKAL1 variant overlapped with the selection of a cluster of GIP variants in the same population ∼11,800 to 2,000 years ago, we speculate that these regulatory genes at the human enteroinsular axis could be highly responsive to environmental selection in recent human history.
    PLoS ONE 01/2014; 9(9):e105410. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The pronounced global rise in sugar consumption in recent years has been driven largely by increased consumption of sugar-sweetened beverages. Although high sugar intakes are recognised as increasing the risk of obesity and related metabolic disturbances, less is known about how sugar might also impair cognition and learned behaviour. This review considers the effects of sugar in rodents on measures of learning and memory; reward processing, anxiety and mood. The parallels between sugar consumption and addictive behaviours are also discussed. The available evidence clearly indicates that sugar consumption can induce cognitive dysfunction. Deficits have been found most consistently on tasks measuring spatial learning and memory. Younger animals appear to be particularly sensitive to the effects of sugar on reward processing, yet results vary according to what reward-related behaviour is assessed. Sugar does not appear to produce long-term effects on anxiety or mood. Importantly, cognitive impairments have been found when intake approximates levels of sugar consumption in people and without changes to weight gain. There remain several caveats when extrapolating from animal models to putative effects of sugar on cognitive function in people. These issues are discussed in conjunction with potential underlying neural mechanisms and directions for future research.
    Appetite 05/2014; · 2.54 Impact Factor

Full-text

View
3 Downloads
Available from