Osteoblast–adipocyte lineage plasticity in tissue development, maintenance and pathology

Department of Developmental Biology, REB 413, Harvard School of Dental Medicine, 188 Longwood Ave, Boston, MA, 02115, USA, .
Cellular and Molecular Life Sciences CMLS (Impact Factor: 5.86). 08/2013; 71(3). DOI: 10.1007/s00018-013-1440-z
Source: PubMed

ABSTRACT Osteoblasts and adipocytes share a common precursor in adult bone marrow and there is a degree of plasticity between the two cell lineages. This has important implications for the etiology of not only osteoporosis but also several other diseases involving an imbalance between osteoblasts and adipocytes. Understanding the process of differentiation of osteoblasts and adipocytes and their trans-differentiation is crucial in order to identify genes and other factors that may contribute to the pathophysiology of such diseases. Several transcriptional regulators have been shown to control osteoblast and adipocyte differentiation and function. Regulation of cell commitment occurs at the level of the progenitor cell through cross talk between complex signaling pathways and epigenetic mechanisms such as DNA methylation, chromatin remodeling, and microRNAs. Here we review the complex precursor cell microenvironment controlling osteoblastogenesis and adipogenesis during tissue development, maintenance, and pathology.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Bone is constantly being made and remodeled to maintain bone volume and calcium homeostasis. Even small changes in the dosage, location and duration of int/Wingless (Wnt) signaling affect skeletal development and homeostasis. Wnt/β-catenin signaling controls cell fate determination, proliferation and survival by affecting a balance between bone-forming osteoblast and bone-resorbing osteoclast cell differentiation. During early skeletal development, Wnt/β-catenin signaling is required in directing mesenchymal progenitor cells toward the osteoblast lineage. Later, Wnt/β-catenin in chondrocytes of the growth plate promotes chondrocyte survival, hypertrophic differentiation and endochondral ossification. Gain- or loss-of-function mutations in the Wnt signaling components are causally linked to high or low bone mass in mice and humans. Inactivation of Wnt/β-catenin signaling leads to imbalance between bone formation and resorption because of accelerated osteoclastogenesis due to decline in the levels of osteoprotegerin (OPG) secreted by osteoblasts or directly via Frizzled 8 (Fzd8). In this review, we provide a landscape of the Wnt pathway components in influencing progenitor cell differentiation toward osteoblasts or osteoclasts under physiological conditions as well as pathological disorders resulting in various skeletal dysplasia syndromes.
    06/2014; 3:541. DOI:10.1038/bonekey.2014.36
  • [Show abstract] [Hide abstract]
    ABSTRACT: Multiple myeloma is a B-cell malignancy characterized by the unrelenting proliferation of plasma cells. Multiple myeloma causes osteolytic lesions and fractures that do not heal due to decreased osteoblastic and increased osteoclastic activity. However, the exact relationship between osteoblasts and myeloma cells remains elusive. Understanding the interactions between these dynamic bone-forming cells and myeloma cells is crucial to understanding how osteolytic lesions form and persist, and how tumors grow within the bone marrow. This review provides a comprehensive overview of basic and translational research focused on the role of osteoblasts in multiple myeloma progression and their relationship to osteolytic lesions. Importantly, current challenges for in vitro studies exploring direct osteoblastic effects on myeloma cells, and gaps in understanding the role of the osteoblast in myeloma progression are delineated. Finally, successes and challenges in myeloma treatment with osteoanabolic therapy (i.e. any treatment that induces increased osteoblastic number or activity) are enumerated. Our goal is to illuminate novel mechanisms by which osteoblasts may contribute to multiple myeloma disease progression and osteolysis to better direct research efforts. Ultimately, we hope this may provide a roadmap for new approaches to the pathogenesis and treatment of multiple myeloma with a particular focus on the osteoblast. Copyright © 2015. Published by Elsevier Inc.
    Bone 02/2015; 75. DOI:10.1016/j.bone.2015.02.021 · 4.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Epigenetic regulation utilizes different mechanisms to convey heritable traits to progeny cells that are independent of DNA sequence, including DNA silencing, post-translational modifications of histone proteins, and the post-transcriptional modulation of RNA transcript levels by non-coding RNAs. Although long non-coding RNAs have recently emerged as important regulators of gene imprinting, their functions during osteogenesis are as yet unexplored. In contrast, microRNAs (miRNAs) are well characterized for their control of osteogenic and osteoclastic pathways; thus, further defining how gene regulatory networks essential for skeleton functions are coordinated and finely tuned through the activities of miRNAs. Roles of miRNAs are constantly expanding as new studies uncover associations with skeletal disorders. The distinct functions of epigenetic regulators and evidence for integrating their activities to control normal bone gene expression and bone disease will be presented. In addition, potential for using "signature miRNAs" to identify, manage, and therapeutically treat osteosarcoma will be discussed in this review.
    Current Osteoporosis Reports 09/2014; DOI:10.1007/s11914-014-0240-1