Serum Brain-Derived Neurotrophic Factor and Vascular Endothelial Growth Factor Levels Are Associated With Risk of Stroke and Vascular Brain Injury Framingham Study

and University of California at Davis, Sacramento (C.D.).
Stroke (Impact Factor: 5.72). 08/2013; 44(10). DOI: 10.1161/STROKEAHA.113.001447
Source: PubMed


Brain-derived neurotrophic factor (BDNF), a major neurotrophin and vascular endothelial growth factor (VEGF) have a documented role in neurogenesis, angiogenesis, and neuronal survival. In animal experiments, they impact infarct size and functional motor recovery after an ischemic brain lesion. We sought to examine the association of serum BDNF and VEGF with the risk of clinical stroke or subclinical vascular brain injury in a community-based sample.
In 3440 Framingham Study participants (mean age, 65±11 years; 56% women) who were free of stroke/transient ischemic attack (TIA), we related baseline BDNF and logVEGF to risk of incident stroke/TIA. In a subsample with brain MRI and with neuropsychological tests available (n=1863 and 2104, respectively; mean age, 61±9 years, 55% women, in each), we related baseline BDNF and logVEGF to log-white matter hyperintensity volume on brain MRI, and to visuospatial memory and executive function tests.
During a median follow-up of 10 years, 193 participants experienced incident stroke/TIA. In multivariable analyses adjusted for age, sex, and traditional stroke risk factors, lower BDNF and higher logVEGF levels were associated with an increased risk of incident stroke/TIA (hazard ratio comparing BDNF Q1 versus Q2-Q4, 1.47; 95% confidence interval, 1.09-2.00; P=0.012 and hazard ratio/SD increase in logVEGF, 1.21; 95% confidence interval, 1.04-1.40; P=0.012). Persons with higher BDNF levels had less log-white matter hyperintensity volume (β±SE=-0.05±0.02; P=0.025), and better visual memory (β±SE=0.18±0.07; P=0.005).
Lower serum BDNF and higher VEGF concentrations were associated with increased risk of incident stroke/TIA. Higher levels of BDNF were also associated with less white matter hyperintensity and better visual memory. Our findings suggest that circulating BDNF and VEGF levels modify risk of clinical and subclinical vascular brain injury.

8 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: Despite efforts to reduce mortality caused by stroke and perinatal asphyxia, these are still the 2(nd) largest cause of death worldwide in the age groups they affect. Furthermore, survivors of cerebral hypoxia-ischemia often suffer neurological morbidities. A better understanding of pathophysiological mechanisms in focal and global brain ischemia will contribute to the development of tailored therapeutic strategies. Similarly, insight in molecular pathways involved in preconditioning-induced brain protection will provide possibilities for future treatment. Microarray technology is a great tool for investigating large scale gene expression, and has been used in many experimental studies of cerebral ischemia and preconditioning to unravel molecular (patho-) physiology. However, the amount of data across microarray studies can be daunting and hard to interpret which is why we aim to provide a clear overview of available data in experimental rodent models. Findings for both injurious ischemia and preconditioning are reviewed under separate subtopics such as cellular stress, inflammation, cytoskeleton and cell signaling. Finally, we investigated the transcriptome signature of brain protection across preconditioning studies in search of transcripts that were expressed similarly across studies. Strikingly, when comparing genes discovered by single-gene analysis we observed only 15 genes present in two studies or more. We subjected these 15 transcripts to DAVID Annotation Clustering analysis to derive their shared biological meaning. Interestingly, the MAPK signaling pathway and more specifically the ERK1/2 pathway geared toward cell survival/proliferation was significantly enriched. To conclude, we advocate incorporating pathway analysis into all microarray data analysis in order to improve the detection of similarities between independently derived datasets.
    Brain research 04/2014; 1564. DOI:10.1016/j.brainres.2014.04.001 · 2.84 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: At least one third of stroke survivors suffer from depression. The development of comorbid depression after stroke is clinically highly significant, because post-stroke depression is associated with increased mortality, slows recovery and leads to worse functional outcomes. Here, we review the evidence that post-stroke depression can be effectively modeled in experimental rodents via a variety of approaches. This opens an exciting new window onto the neurobiology of depression and permits probing potential underlying mechanisms such as disturbed cellular plasticity, neuroendocrine dysregulation, neuroinflammation, and neurodegeneration in a novel context. From the point of view of translational stroke research, extending the scope of experimental investigations beyond the study of short-term end points and, in particular, acute lesion size, may help improve the relevance of preclinical results to human disease. Furthermore, accumulating evidence from both clinical and experimental studies offers the tantalizing prospect of serotonergic antidepressants as the first pharmacological therapy for stroke that would be available during the subacute and chronic phases of recovery. Interdisciplinary neuro-psychiatric research will be called on to dissect the mechanisms underpinning the beneficial effects of antidepressants on stroke recovery.
    British Journal of Pharmacology 05/2014; 171(20). DOI:10.1111/bph.12775 · 4.84 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Brain derived neurotrophic factor (BDNF), which has been implicated in the pathogenesis of schizophrenia, has been recently shown to be involved in the regulation of metabolism and energy homeostasis. This study seeks to examine the relationship between BDNF, metabolic indices and cardiovascular (CVD) risk in patients with schizophrenia. Medical histories, demographic information and anthropometric measurements were collected and analyzed from 61 participants with schizophrenia. Fasting glucose and lipids were measured in a central laboratory, and serum BDNF was analyzed using commercially available enzyme-linked immunosorbent assay (ELISA). The 10-year CVD risk for each participant was computed using the Framingham risk score (FRS). Linear regressions were performed to examine the relationships between serum BDNF with body mass index (BMI), blood pressure (BP), triglycerides (TG), total cholesterol, high-density lipoprotein cholesterol (HDL-C) and glucose. To examine the relationship between serum BDNF and FRS, serum BDNF was categorized into quartiles, and a multiple regression was performed. After adjusting for age, gender and current smoking status, diastolic BP (dBP) (p=0.045) and TG (p=0.015) were found to be significantly associated with serum BDNF. Participants in the highest quartile of serum BDNF had a 3.3 times increase in FRS over those in the lowest quartile. Our findings support the possible regulatory role of BDNF in metabolism and cardiovascular homeostasis among patients with schizophrenia similar to that observed among the non-mentally ill. Serum BDNF not only present itself as a candidate biomarker of schizophrenia but also might be a viable marker of metabolic co-morbidities associated with schizophrenia.
    Schizophrenia Research 06/2014; 157(1-3). DOI:10.1016/j.schres.2014.05.024 · 3.92 Impact Factor
Show more