Article

Genetics in Population Health Science: Strategies and Opportunities.

Daniel W. Belsky is with the Center for the Study of Aging and Human Development, Duke University Medical Center, and the Institute for Genome Sciences and Policy, Duke University, Durham, NC. Terrie E. Moffitt and Avshalom Caspi are with the Institute for Genome Sciences and Policy, Duke University and the Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, the Department of Psychology and Neuroscience, Duke University, and the Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, Kings College London, London, UK.
American Journal of Public Health (Impact Factor: 4.23). 08/2013; DOI: 10.2105/AJPH.2012.301139
Source: PubMed

ABSTRACT Translational research is needed to leverage discoveries from the frontiers of genome science to improve public health. So far, public health researchers have largely ignored genetic discoveries, and geneticists have ignored important aspects of population health science. This mutual neglect should end. In this article, we discuss 3 areas where public health researchers can help to advance translation: (1) risk assessment: investigate genetic profiles as components in composite risk assessments; (2) targeted intervention: conduct life-course longitudinal studies to understand when genetic risks manifest in development and whether intervention during sensitive periods can have lasting effects; and (3) improved understanding of environmental causation: collaborate with geneticists on gene-environment interaction research. We illustrate with examples from our own research on obesity and smoking. (Am J Public Health. Published online ahead of print August 8, 2013: e1-e11. doi:10.2105/AJPH.2012.301139).

Download full-text

Full-text

Available from: Daniel W Belsky, Jun 21, 2015
1 Follower
 · 
129 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We conducted a developmental analysis of genetic moderation of the effect of the Fast Track intervention on adult externalizing psychopathology. The Fast Track intervention enrolled 891 children at high risk to develop externalizing behavior problems when they were in kindergarten. Half of the enrolled children were randomly assigned to receive 10 years of treatment, with a range of services and resources provided to the children and their families, and the other half to usual care (controls). We previously showed that the effect of the Fast Track intervention on participants' risk of externalizing psychopathology at age 25 years was moderated by a variant in the glucocorticoid receptor gene. Children who carried copies of the A allele of the single nucleotide polymorphism rs10482672 had the highest risk of externalizing psychopathology if they were in the control arm of the trial and the lowest risk of externalizing psychopathology if they were in the treatment arm. In this study, we test a developmental hypothesis about the origins of this for better and for worse Gene × Intervention interaction (G × I): that the observed G × I effect on adult psychopathology is mediated by the proximal impact of intervention on childhood externalizing problems and adolescent substance use and delinquency. We analyzed longitudinal data tracking the 270 European American children in the Fast Track randomized control trial with available genetic information (129 intervention children, 141 control group peers, 69% male) from kindergarten through age 25 years. Results show that the same pattern of for better and for worse susceptibility to intervention observed at the age 25 follow-up was evident already during childhood. At the elementary school follow-ups and at the middle/high school follow-ups, rs10482672 predicted better adjustment among children receiving the Fast Track intervention and worse adjustment among children in the control condition. In turn, these proximal G × I effects early in development mediated the ultimate G × I effect on externalizing psychopathology at age 25 years. We discuss the contribution of these findings to the growing literature on genetic susceptibility to environmental intervention.
    Development and Psychopathology 02/2015; 27(1):81-95. DOI:10.1017/S095457941400131X · 4.89 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objective: To test transethnic replication of a genetic risk score for obesity in white and black young adults using a national sample with longitudinal data. Design and Methods: A prospective longitudinal study using the National Longitudinal Study of Adolescent Health Sibling Pairs (n = 1,303). Obesity phenotypes were measured from anthropometric assessments when study members were aged 18-26 and again when they were 24-32. Genetic risk scores were computed based on published genome-wide association study discoveries for obesity. Analyses tested genetic associations with body-mass index (BMI), waist-height ratio, obesity, and change in BMI over time. Results: White and black young adults with higher genetic risk scores had higher BMI and waist-height ratio and were more likely to be obese compared to lower genetic risk age-peers. Sibling analyses revealed that the genetic risk score was predictive of BMI net of risk factors shared by siblings. In white young adults only, higher genetic risk predicted increased risk of becoming obese during the study period. In black young adults, genetic risk scores constructed using loci identified in European and African American samples had similar predictive power. Conclusion: Cumulative information across the human genome can be used to characterize individual level risk for obesity. Measured genetic risk accounts for only a small amount of total variation in BMI among white and black young adults. Future research is needed to identify modifiable environmental exposures that amplify or mitigate genetic risk for elevated BMI.
    PLoS ONE 07/2014; 9(7):e101596. DOI:10.1371/journal.pone.0101596 · 3.53 Impact Factor
  • Source
    02/2014; 168(4). DOI:10.1001/jamapediatrics.2013.5291