Article

Olanzapine Activates Hepatic Mammalian Target of Rapamycin: New Mechanistic Insight into Metabolic Dysregulation with Atypical Antipsychotic Drugs

University of Louisville
Journal of Pharmacology and Experimental Therapeutics (Impact Factor: 3.86). 08/2013; 347(1). DOI: 10.1124/jpet.113.207621
Source: PubMed

ABSTRACT Olanzapine (OLZ) is an effective treatment for schizophrenia and other disorders, but causes weight gain and metabolic syndrome. Most studies to date have focused on potential effects of OLZ on CNS mediation of weight; however, peripheral changes in liver or other key metabolic organs may also play a role in systemic effects of OLZ. The purpose of this study was to therefore investigate the effects of OLZ on hepatic metabolism in a mouse model of OLZ exposure. Female C57Bl/6J mice were administered OLZ (8 mg/kg/d) or vehicle subcutaneously by osmotic minipumps for 28 days. Liver and plasma were taken at sacrifice for biochemical analyses and for GCxGC-TOF MS metabolomics analysis. OLZ increased body weight, fat pad mass, and liver-to-body weight ratio without commensurate increase in food consumption, indicating that OLZ altered energy expenditure. Expression and biochemical analyses indicated that OLZ induced anaerobic glycolysis and caused a 'pseudo-fasted' state, which depleted hepatic glycogen reserves; OLZ caused similar effects in cultured HepG2 cells, as determined by Seahorse analysis. Metabolomic analysis indicated that OLZ increased hepatic concentrations of amino acids that can alter metabolism via the mTOR pathway; indeed, hepatic mTOR signaling was robustly increased by OLZ. Interestingly, OLZ concomitantly activated AMPK signaling. Taken together, these data suggest that disturbances in glucose and lipid metabolism caused by OLZ in liver may be mediated, at least in part, via simultaneous activation of both catabolic (AMPK) and anabolic (mTOR) pathways, and yield new insight into the metabolic side effects of this drug.

Full-text

Available from: Robin Schmidt, Dec 23, 2013
0 Followers
 · 
142 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to investigate the effects of olanzapine on growth inhibition as well as autophagy in glioma cells in vitro and in vivo. The proliferation of both LN229 and T98 glioma cells, measured by MTT assay, was suppressed in a concentration-dependent and time-dependent manner. Moreover, apoptosis of both cells was significantly increased with the treatment of olanzapine as evidenced by increased Bcl-2 expression, Hoechst 33258 staining and annexinV-FITC/PI staining. Olanzapine treatment also enhanced activation of autophagy with increased expression of LC3-II, expression of protein p62, a substrate of autophagy, being decreased. The growth inhibition by olanzapine in both glioma cell lines could be blocked by co-treatment with 3-MA, an autophagy inhibitor. Furthermore, olanzapine effectively blocked the growth of subcutaneous xenografts of LN229 glioma cells in vivo. The increased level of protein LC3-II and decreased level of p62 followed by a decreased level of Bcl-2, suggesting that autophagy may contribute to apoptosis. In addition, reduced proliferation of glioma cells was shown by a decrease of Ki-67 staining and increased caspase-3 staining indicative of apoptosis in mouse xenografts. These results indicated that olanzapine inhibited the growth of glioma cells accompanied by induction of autophagy and apoptosis both in vitro and in vivo. Olanzapine-induced autophagy plays a tumor-suppressing role in glioma cells.
    Asian Pacific journal of cancer prevention: APJCP 10/2014; 15(19):8107-13. DOI:10.7314/APJCP.2014.15.19.8107 · 1.50 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Antipsychotic (AP) treatment-emergent extrapyramidal symptoms (EPS) are acute adverse reactions of APs. The aim of the present study is to analyze gene-gene interactions in nine genes related to the mTOR pathway, in order to develop genetic predictors of the appearance of EPS. 243 subjects (78 presenting EPS: 165 not) from three cohorts participated in the present study: Cohort 1, patients treated with risperidone, (n=114); Cohort 2, patients treated with APs other than risperidone (n=102); Cohort 3, AP-naïve patients with first-episode psychosis treated with risperidone, paliperidone or amisulpride, n=27. We analyzed gene-gene interactions by multifactor dimensionality reduction assay (MDR). In Cohort 1, we identified a four-way interaction, including the rs1130214 (AKT1), rs456998 (FCHSD1), rs7211818 (Raptor) and rs1053639 (DDIT4), that correctly predicted 97 of the 114 patients (85% accuracy). We validated the predictive power of the four-way interaction in Cohort 2 and in Cohort 3 with 86% and 88% accuracy respectively. We develop and validate a powerful pharmacogenetic predictor of AP-induced EPS. For the first time, the mTOR pathway has been related to EPS susceptibility and AP response. However, validation in larger and independent populations will be necessary for optimal generalization. Copyright © 2014 Elsevier B.V. and ECNP. All rights reserved.
    European neuropsychopharmacology: the journal of the European College of Neuropsychopharmacology 11/2014; 25(1). DOI:10.1016/j.euroneuro.2014.11.011 · 5.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The use of antipsychotic drugs for the treatment of mood disorders and psychosis has increased dramatically over the last decade. Despite its consumption being associated with beneficial neuropsychiatric effects in patients, atypical antipsychotics (which are the most frequently prescribed antipsychotics) use is accompanied by some secondary adverse metabolic effects such as weight gain, dyslipidemia and glucose intolerance. The molecular mechanisms underlying these adverse effects are not fully understood but have been suggested to involve a dysregulation of adipose tissue homeostasis. As such, the aim of this paper is to review and discuss the role of adipose tissue in the development of secondary adverse metabolic effects induced by atypical antipsychotics. Data analyzed in this article suggest that atypical antipsychotics may increase adipose tissue (particularly visceral adipose tissue) lipogenesis, differentiation/hyperplasia, pro-inflammatory mediator secretion and insulin resistance and decrease adipose tissue lipolysis. Consequently, patients receiving antipsychotic medication could be at risk of developing obesity, type 2 diabetes and cardiovascular disease. A better knowledge of the impact of these drugs on adipose tissue homeostasis may unveil strategies to develop novel antipsychotic drugs with less adverse metabolic effects and to develop adjuvant therapies (e.g. behavioral and nutritional therapies) to neuropsychiatric patients receiving antipsychotic medication. Copyright © 2014 Elsevier B.V. and ECNP. All rights reserved.
    European neuropsychopharmacology: the journal of the European College of Neuropsychopharmacology 12/2014; 25(1). DOI:10.1016/j.euroneuro.2014.11.008 · 5.40 Impact Factor