Mutations in Planar Cell Polarity Gene SCRIB Are Associated with Spina Bifida

Dell Pediatric Research Institute, Department of Nutritional Sciences, the University of Texas at Austin, Austin, Texas, United States of America.
PLoS ONE (Impact Factor: 3.23). 07/2013; 8(7):e69262. DOI: 10.1371/journal.pone.0069262
Source: PubMed


Neural tube defects (NTDs) (OMIM #182940) including anencephaly, spina bifida and craniorachischisis, are severe congenital malformations that affect 0.5-1 in 1,000 live births in the United States, with varying prevalence around the world. Mutations in planar cell polarity (PCP) genes are believed to cause a variety of NTDs in both mice and humans. SCRIB is a PCP-associated gene. Mice that are homozygous for the Scrib p.I285K and circletail (Crc) mutations, present with the most severe form of NTDs, namely craniorachischisis. A recent study reported that mutations in SCRIB were associated with craniorachischisis in humans, but whether SCRIB mutations contribute to increased spina bifida risk is still unknown. We sequenced the SCRIB gene in 192 infants with spina bifida and 190 healthy controls. Among the spina bifida patients, we identified five novel missense mutations that were predicted-to-be-deleterious by the PolyPhen software. Of these five mutations, three of them (p.P1043L, p.P1332L, p.L1520R) significantly affected the subcellular localization of SCRIB. In addition, we demonstrated that the craniorachischisis mouse line-90 mutation I285K, also affected SCRIB subcellular localization. In contrast, only one novel missense mutation (p.A1257T) was detected in control samples, and it was predicted to be benign. This study demonstrated that rare deleterious mutations of SCRIB may contribute to the multifactorial risk for human spina bifida.

Download full-text


Available from: Richard H Finnell,
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: With the intent of dissecting the molecular complexity of Philadelphia-negative myeloproliferative neoplasms (MPN), we designed a target enrichment panel to explore, using next-generation sequencing (NGS), the mutational status of an extensive list of 2000 cancer-associated genes and microRNAs. The genomic DNA of granulocytes and in-vitro-expanded CD3+ T-lymphocytes, as a germline control, was target-enriched and sequenced in a learning cohort of 20 MPN patients using Roche 454 technology. We identified 141 genuine somatic mutations, most of which were not previously described. To test the frequency of the identified variants, a larger validation cohort of 189 MPN patients was additionally screened for these mutations using Ion Torrent AmpliSeq NGS. Excluding the genes already described in MPN, for 8 genes (SCRIB, MIR662, BARD1, TCF12, FAT4, DAP3, POLG, and NRAS), we demonstrated a mutation frequency between 3 and 8%. We also found that mutations at codon 12 of NRAS (NRASG12V and NRASG12D) were significantly associated, for primary myelofibrosis (PMF), with highest DIPSS-plus score categories. This association was then confirmed in 66 additional PMF patients composing a final dataset of 168 PMF showing an NRAS mutation frequency of 4.7%, which was associated with a worse outcome, as defined by the DIPSS plus score.Leukemia accepted article preview online, 22 October 2013. doi:10.1038/leu.2013.302.
    Leukemia: official journal of the Leukemia Society of America, Leukemia Research Fund, U.K 10/2013; 28(5). DOI:10.1038/leu.2013.302 · 10.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Spina bifida is one of the most common neural tube defects (NTDs) with a complex etiology. Variants in planar cell polarity (PCP) genes have been associated with NTDs including spina bifida in both animal models and human cohorts. In this study, we sequenced all exons of CELSR1 in 192 spina bifida patients from a California population to determine the contribution of CELSR1 mutations in the studied population. Novel and rare variants identified in these patients were subsequently genotyped in 190 ethnically matched control individuals. Six missense mutations not found in controls were predicted to be deleterious by both SIFT and PolyPhen. Two TG dinucleotide repeat variants were individually detected in 2 spina bifida patients but not detected in controls. In vitro functional analysis showed that the two TG dinucleotide repeat variants not only changed subcellular localization of the CELSR1 protein, but also impaired the physical association between CELSR1 and VANGL2, and thus diminished the ability to recruit VANGL2 for cell-cell contact. In total, 3% of our spina bifida patients carry deleterious or predicted to be deleterious CELSR1 mutations. Our findings suggest that CELSR1 mutations contribute to the risk of spina bifida in a cohort of spina bifida patients from California.
    PLoS ONE 03/2014; 9(3):e92207. DOI:10.1371/journal.pone.0092207 · 3.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Neural tube defects (NTDs), including spina bifida and anencephaly, are severe birth defects of the central nervous system that originate during embryonic development when the neural tube fails to close completely. Human NTDs are multifactorial, with contributions from both genetic and environmental factors. The genetic basis is not yet well understood, but several nongenetic risk factors have been identified as have possibilities for prevention by maternal folic acid supplementation. Mechanisms underlying neural tube closure and NTDs may be informed by experimental models, which have revealed numerous genes whose abnormal function causes NTDs and have provided details of critical cellular and morphological events whose regulation is essential for closure. Such models also provide an opportunity to investigate potential risk factors and to develop novel preventive therapies.
    Annual Review of Neuroscience 07/2014; 37(1):221-242. DOI:10.1146/annurev-neuro-062012-170354 · 19.32 Impact Factor
Show more