Article

Circulating miRNA Biomarkers for Alzheimer's Disease

University of Melbourne, Australia
PLoS ONE (Impact Factor: 3.53). 07/2013; 8(7):e69807. DOI: 10.1371/journal.pone.0069807
Source: PubMed

ABSTRACT A minimally invasive diagnostic assay for early detection of Alzheimer's disease (AD) is required to select optimal patient groups in clinical trials, monitor disease progression and response to treatment, and to better plan patient clinical care. Blood is an attractive source for biomarkers due to minimal discomfort to the patient, encouraging greater compliance in clinical trials and frequent testing. MiRNAs belong to the class of non-coding regulatory RNA molecules of ∼22 nt length and are now recognized to regulate ∼60% of all known genes through post-transcriptional gene silencing (RNAi). They have potential as useful biomarkers for clinical use because of their stability and ease of detection in many tissues, especially blood. Circulating profiles of miRNAs have been shown to discriminate different tumor types, indicate staging and progression of the disease and to be useful as prognostic markers. Recently their role in neurodegenerative diseases, both as diagnostic biomarkers as well as explaining basic disease etiology has come into focus. Here we report the discovery and validation of a unique circulating 7-miRNA signature (hsa-let-7d-5p, hsa-let-7g-5p, hsa-miR-15b-5p, hsa-miR-142-3p, hsa-miR-191-5p, hsa-miR-301a-3p and hsa-miR-545-3p) in plasma, which could distinguish AD patients from normal controls (NC) with >95% accuracy (AUC of 0.953). There was a >2 fold difference for all signature miRNAs between the AD and NC samples, with p-values<0.05. Pathway analysis, taking into account enriched target mRNAs for these signature miRNAs was also carried out, suggesting that the disturbance of multiple enzymatic pathways including lipid metabolism could play a role in AD etiology.

0 Followers
 · 
139 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Extracellular vesicles (EVs), including exosomes, microvesicles and apoptotic bodies, participate in intercellular communication, and particularly, in paracrine and endocrine signalling. The EVs and their specific contents have been considered hallmarks of different diseases. It has been recently discovered that EVs can co-transport nucleic acids such as DNAs, ribosomal RNAs, circular RNAs (circRNAs), long noncoding RNAs (lnRNAs) and microRNAs (miRNAs). miRNAs are important regulators of gene expression at the post-transcriptional level, although they may also play other roles. Recent evidence supports the hypothesis that miRNAs can activate Toll-like receptors (TLRs) under certain circumstances. TLRs belong to a multigene family of immune system receptors and have been recently described in the nervous system. In the immune system, TLRs are important for the recognition of the invading microorganisms, whereas in the nervous system, they recognise endogenous ligands released by undifferentiated or necrotic/injured cells. In the neuronal disease field, TLRs activity has been associated with amyotrophic lateral sclerosis (ALS), stroke, Alzheimer's and Parkinson's disease. Herein, we reviewed the current knowledge of the relationship between miRNA release by EVs and the inflammation signalling triggered by TLRs in neighbouring cells or during long-distance cell-to-cell communication. We highlight novel aspects of this communication mechanism, offering a valuable insight into such pathways in health and disease.
    Molecular Neurobiology 04/2015; DOI:10.1007/s12035-015-9142-1 · 5.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer's disease (AD) is a neurodegenerative disorder characterized clinically by the progressive decline of memory and cognition. Histopathologically, two main hallmarks have been identified in AD: amyloid-β peptide extracellular neuritic plaques and neurofibrillary tangles formed by posttranslational modified tau protein. A definitive diagnosis can only be achieved after the post mortem verification of the histological mentioned alterations. Therefore, the development of biomarkers that allow an early diagnosis and/or predict disease progression is imperative. The prospect of a blood-based biomarker is possible with the finding of circulating microRNAs (miRNAs), a class of small non-coding RNAs of 22-25 nucleotides length that regulate mRNA translation rate. miRNAs travel through blood and recent studies performed in potential AD cases suggest the possibility of finding pathology-associated differences in circulating miRNA levels that may serve to assist in early diagnosis of the disease. However, these studies analyzed samples at a single time-point, limiting the use of miRNAs as biomarkers in AD progression. In this study we evaluated miRNA levels in plasma samples at different time-points of the evolution of an AD-like pathology in a transgenic mouse model of the disease (3xTg-AD). We performed multiplex qRT-PCR and compared the plasmatic levels of 84 miRNAs previously associated to central nervous system development and disease. No significant differences were detected between WT and transgenic young mice. However, age-related significant changes in miRNA abundance were observed for both WT and transgenic mice, and some of these were specific for the 3xTg-AD. In agreement, variations in the levels of particular miRNAs were identified between WT and transgenic old mice thus suggesting that the age-dependent evolution of the AD-like pathology, rather than the presence and expression of the transgenes, modifies the circulating miRNA levels in the 3xTg-AD mice.
    Frontiers in Cellular Neuroscience 02/2015; 9:53. DOI:10.3389/fncel.2015.00053 · 4.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Major depressive disorder (MDD) is increasingly viewed as interplay of environmental stressors and genetic predisposition, and recent data suggest that the disease affects not only the brain, but the entire body. As a result, we aimed at determining whether patients with major depression have aberrant molecular responses to stress in peripheral tissues. We examined the effects of two metabolic stressors, galactose (GAL) or reduced lipids (RL), on the transcriptome and miRNome of human fibroblasts from 16 pairs of patients with MDD and matched healthy controls (CNTR). Our results demonstrate that both MDD and CNTR fibroblasts had a robust molecular response to GAL and RL challenges. Most importantly, a significant part (messenger RNAs (mRNAs): 26–33%; microRNAs (miRNAs): 81–90%) of the molecular response was only observed in MDD, but not in CNTR fibroblasts. The applied metabolic challenges uncovered mRNA and miRNA signatures, identifying responses to each stressor characteristic for the MDD fibroblasts. The distinct responses of MDD fibroblasts to GAL and RL revealed an aberrant engagement of molecular pathways, such as apoptosis, regulation of cell cycle, cell migration, metabolic control and energy production. In conclusion, the metabolic challenges evoked by GAL or RL in dermal fibroblasts exposed adaptive dysfunctions on mRNA and miRNA levels that are characteristic for MDD. This finding underscores the need to challenge biological systems to bring out disease-specific deficits, which otherwise might remain hidden under resting conditions.
    Schizophrenia Research 04/2015; 5. DOI:10.1038/tp.2015.14 · 4.43 Impact Factor

Full-text (3 Sources)

Download
67 Downloads
Available from
May 17, 2014