Article

Influence of ambient air pollution on global DNA methylation in healthy adults: A seasonal follow-up.

Environmental Risk and Health unit, VITO (Flemish Institute for Technological Research), Boeretang 200, B-2400 Mol, Belgium; Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium. Electronic address: .
Environment international (Impact Factor: 6.25). 08/2013; 59C:418-424. DOI: 10.1016/j.envint.2013.07.007
Source: PubMed

ABSTRACT DNA methylation changes are potential pathways of environmentally induced health effects. We investigated whether exposure to ambient concentrations of NO2, PM10, PM2.5 and O3 and traffic parameters were associated with global DNA methylation in blood of healthy adults.
48 non-smoking adults (25 males) with a median age of 39years were sampled in winter and summer. Global DNA methylation in whole blood (% 5-methyl-2'-deoxycytidine, %5mdC) was analyzed with HPLC. Exposure to air pollutants at the home address was assessed using interpolated NO2, PM10, PM2.5 and O3 concentrations for various exposure windows (60- to 1-day moving average exposures and yearly averages) and GIS-based traffic parameters. Associations between pollutants and %5mdC were tested with multiple mixed effects regression models.
Average %5mdC (SD) was 4.30 (0.08) in winter and 4.29 (0.08) in summer. Men had higher %5mdC compared to women both in winter (4.32 vs. 4.26) and summer (4.31 vs. 4.27). When winter and summer data were analyzed together, various NO2, PM10 and PM2.5 moving average exposures were associated with changes in %5mdC (95% CI) ranging from -0.04 (-0.09 to 0.00) to -0.14 (-0.28 to 0.00) per IQR increase in pollutant. NO2, PM10, PM2.5 and O3 moving average exposures were associated with decreased %5mdC (95% CI) varying between -0.01 (-0.03 to 0.00) and -0.17 (-0.27 to -0.06) per IQR increase in pollutant in summer but not in winter.
Decreased global DNA methylation in whole blood was associated with exposure to NO2, PM10, PM2.5 and O3 at the home addresses of non- adults. Most effects were observed for the 5- to 30-day moving average exposures.

0 Bookmarks
 · 
168 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: DNA methylation is a well-characterized epigenetic modification that plays an important role in the regulation of gene expression. There is growing evidence on the involvement of epigenetic mechanisms in disease onset, including cancer. Environmental factors seem to induce changes in DNA methylation affecting human health. However, little is known about basal methylation levels in healthy people and about the correlation between environmental factors and different methylation profiles. We investigated the effect of seasonality on basal methylation by testing methylation levels in the long interspersed nucleotide element-1 (LINE-1) and in two cancer-related genes (RASSF1A and MGMT) of 88 healthy male heavy smokers involved in an Italian randomized study; at enrolment the subjects donated a blood sample collected in different months. Methylation analyses were performed by pyrosequencing. Mean methylation percentage was higher in spring and summer for the LINE1, RASSF1A and MGMT genes (68.26%, 2.35%, and 9.52% respectively) compared with autumn and winter (67.43%, 2.17%, and 8.60% respectively). In particular, LINE-1 was significantly hypomethylated (p = 0.04 or 0.05 depending on the CpG island involved) in autumn and winter compared with spring and summer. Seasonality seems to be a modifier of methylation levels and this observation should be taken into account in future analyses.
    PLoS ONE 09/2014; 9(9):e106846. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: DNA methylation is a key epigenetic modification which, in mammals, occurs mainly at CpG dinucleotides. Most of the CpG methylation in the genome is found in repetitive regions, rich in dormant transposons and endogenous retroviruses. Global DNA hypomethylation, which is a common feature of several conditions such as ageing and cancer, can cause the undesirable activation of dormant repeat elements and lead to altered expression of associated genes. DNA hypomethylation can cause genomic instability and may contribute to mutations and chromosomal recombinations. Various approaches for quantification of global DNA methylation are widely used. Several of these approaches measure a surrogate for total genomic methyl cytosine and there is uncertainty about the comparability of these methods. Here we have applied 3 different approaches (luminometric methylation assay, pyrosequencing of the methylation status of the Alu repeat element and of the LINE1 repeat element) for estimating global DNA methylation in the same human cell and tissue samples and have compared these estimates with the "gold standard" of methyl cytosine quantification by HPLC. Next to HPLC, the LINE1 approach shows the smallest variation between samples, followed by Alu. Pearson correlations and Bland-Altman analyses confirmed that global DNA methylation estimates obtained via the LINE1 approach corresponded best with HPLC-based measurements. Although, we did not find compelling evidence that the gold standard measurement by HPLC could be substituted with confidence by any of the surrogate assays for detecting global DNA methylation investigated here, the LINE1 assay seems likely to be an acceptable surrogate in many cases.
    PLoS ONE 01/2013; 8(11):e79044. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this review is to comprehensively summarize the recent achievements in the field of toxicogenomics and cancer research regarding genetic-environmental interactions in carcinogenesis and detection of genetic aberrations in cancer genomes by next-generation sequencing technology. Cancer is primarily a genetic disease in which genetic factors and environmental stimuli interact to cause genetic and epigenetic aberrations in human cells. Mutations in the germline act as either high-penetrance alleles that strongly increase the risk of cancer development, or as low-penetrance alleles that mildly change an individual's susceptibility to cancer. Somatic mutations, resulting from either DNA damage induced by exposure to environmental mutagens or from spontaneous errors in DNA replication or repair are involved in the development or progression of the cancer. Induced or spontaneous changes in the epigenome may also drive carcinogenesis. Advances in next-generation sequencing technology provide us opportunities to accurately, economically, and rapidly identify genetic variants, somatic mutations, gene expression profiles, and epigenetic alterations with single-base resolution. Whole genome sequencing, whole exome sequencing, and RNA sequencing of paired cancer and adjacent normal tissue present a comprehensive picture of the cancer genome. These new findings should benefit public health by providing insights in understanding cancer biology, and in improving cancer diagnosis and therapy.
    Journal of Environmental Science and Health Part C Environmental Carcinogenesis & Ecotoxicology Reviews 04/2014; 32(2):121-58. · 3.23 Impact Factor

Full-text

View
94 Downloads
Available from
Jun 1, 2014