Article

Influence of ambient air pollution on global DNA methylation in healthy adults: A seasonal follow-up.

Environmental Risk and Health unit, VITO (Flemish Institute for Technological Research), Boeretang 200, B-2400 Mol, Belgium; Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium. Electronic address: .
Environment international (Impact Factor: 6.25). 08/2013; 59C:418-424. DOI: 10.1016/j.envint.2013.07.007
Source: PubMed

ABSTRACT DNA methylation changes are potential pathways of environmentally induced health effects. We investigated whether exposure to ambient concentrations of NO2, PM10, PM2.5 and O3 and traffic parameters were associated with global DNA methylation in blood of healthy adults.
48 non-smoking adults (25 males) with a median age of 39years were sampled in winter and summer. Global DNA methylation in whole blood (% 5-methyl-2'-deoxycytidine, %5mdC) was analyzed with HPLC. Exposure to air pollutants at the home address was assessed using interpolated NO2, PM10, PM2.5 and O3 concentrations for various exposure windows (60- to 1-day moving average exposures and yearly averages) and GIS-based traffic parameters. Associations between pollutants and %5mdC were tested with multiple mixed effects regression models.
Average %5mdC (SD) was 4.30 (0.08) in winter and 4.29 (0.08) in summer. Men had higher %5mdC compared to women both in winter (4.32 vs. 4.26) and summer (4.31 vs. 4.27). When winter and summer data were analyzed together, various NO2, PM10 and PM2.5 moving average exposures were associated with changes in %5mdC (95% CI) ranging from -0.04 (-0.09 to 0.00) to -0.14 (-0.28 to 0.00) per IQR increase in pollutant. NO2, PM10, PM2.5 and O3 moving average exposures were associated with decreased %5mdC (95% CI) varying between -0.01 (-0.03 to 0.00) and -0.17 (-0.27 to -0.06) per IQR increase in pollutant in summer but not in winter.
Decreased global DNA methylation in whole blood was associated with exposure to NO2, PM10, PM2.5 and O3 at the home addresses of non- adults. Most effects were observed for the 5- to 30-day moving average exposures.

0 Bookmarks
 · 
139 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: There is compelling evidence that particulate matter (PM) increases lung cancer risk by triggering systemic inflammation, and leukocyte DNA hypomethylation. However, previous investigations focused on repeated element sequences from LINE-1 and Alu families. Tandem repeats, which display a greater propensity to mutate, and are often hypomethylated in cancer patients, have never been investigated in individuals exposed to PM. We measured methylation of three tandem repeats (SATα, NBL2, and D4Z4) by polymerase chain reaction-pyrosequencing on blood samples from truck drivers and office workers (60 per group) in Beijing, China. We used lightweight monitors to measure personal PM2.5 (PM with aerodynamic diameter ≤2.5 µm) and elemental carbon (a tracer of PM from vehicular traffic). Ambient PM10 data were obtained from air quality measuring stations. Overall, an interquartile increase in personal PM2.5 and ambient PM10 levels was associated with a significant covariate-adjusted decrease in SATα methylation (-1.35% 5-methyl cytosine [5mC], P = 0.01; and -1.33%5mC; P = 0.01, respectively). Effects from personal PM2.5 and ambient PM10 on SATα methylation were stronger in truck drivers (-2.34%5mC, P = 0.02; -1.44%5mC, P = 0.06) than office workers (-0.95%5mC, P = 0.26; -1.25%5mC, P = 0.12, respectively). Ambient PM10 was negatively correlated with NBL2 methylation in truck drivers (-1.38%5mC, P = 0.03) but not in office workers (1.04%5mC, P = 0.13). Our result suggests that PM exposure is associated with hypomethylation of selected tandem repeats. Measuring tandem-repeat hypomethylation in easy-to-obtain blood specimens might identify individuals with biological effects and potential cancer risk from PM exposure. Environ. Mol. Mutagen., 2014. © 2014 Wiley Periodicals, Inc.
    Environmental and Molecular Mutagenesis 01/2014; · 3.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: DNA methylation is a key epigenetic modification which, in mammals, occurs mainly at CpG dinucleotides. Most of the CpG methylation in the genome is found in repetitive regions, rich in dormant transposons and endogenous retroviruses. Global DNA hypomethylation, which is a common feature of several conditions such as ageing and cancer, can cause the undesirable activation of dormant repeat elements and lead to altered expression of associated genes. DNA hypomethylation can cause genomic instability and may contribute to mutations and chromosomal recombinations. Various approaches for quantification of global DNA methylation are widely used. Several of these approaches measure a surrogate for total genomic methyl cytosine and there is uncertainty about the comparability of these methods. Here we have applied 3 different approaches (luminometric methylation assay, pyrosequencing of the methylation status of the Alu repeat element and of the LINE1 repeat element) for estimating global DNA methylation in the same human cell and tissue samples and have compared these estimates with the "gold standard" of methyl cytosine quantification by HPLC. Next to HPLC, the LINE1 approach shows the smallest variation between samples, followed by Alu. Pearson correlations and Bland-Altman analyses confirmed that global DNA methylation estimates obtained via the LINE1 approach corresponded best with HPLC-based measurements. Although, we did not find compelling evidence that the gold standard measurement by HPLC could be substituted with confidence by any of the surrogate assays for detecting global DNA methylation investigated here, the LINE1 assay seems likely to be an acceptable surrogate in many cases.
    PLoS ONE 01/2013; 8(11):e79044. · 3.73 Impact Factor

Full-text

View
75 Downloads
Available from
Jun 1, 2014