Article

Localization of Sensors and Objects in Distributed Omnidirectional Vision

10/2001;
Source: CiteSeer

ABSTRACT application systems based on simple computer vision techniques. Especially, the practical approach recently focused on is to use multiple vision sensors with simple visual processing.

0 Bookmarks
 · 
47 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Laser range finders are a non-invasive tool which can be used for anonymously tracking the motion of people and robots in real-world environments with high accuracy. Based on a commercial system we have developed, this paper addresses two practical issues of using networks of portable laser range finders in field environments. We first describe a technique for automated calibration of sensor positions and orientations, by using velocity-based matching of observed human trajectories to define constraints between the sensors. We then propose a mechanism for detecting when a sensor has been moved out of alignment, which can be used to alert an operator of the condition and automatically exclude erroneous data from tracking calculations. After describing our techniques for solving these problems, we demonstrate the effectiveness of our calibration and error detection systems in live trials with our real-time system, as well as offline tests based on scan data recorded from field trials.
    2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, October 18-22, 2010, Taipei, Taiwan; 01/2010
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Wireless Multimedia Sensor Networks (WMSNs) are gaining popularity among researchers over the past few years. Knowledge of the geographic locations of the sensor nodes is very important in a WMSN. In this paper we propose a new algorithm which uses the connectivity information, the estimated distance information among the sensor nodes, as well as the vision images to find the location of the sensor nodes to enable sensor calibration. We achieve this by solving an ID association problem in the WMSN. We then generate local maps for nodes in immediate vicinity and merge them together to get a global map. We demonstrate the effectiveness of our proposed approach through computer simulation.
    Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on; 11/2010