Small Molecule-Induced Mitochondrial Disruption Directs Prostate Cancer Inhibition via UPR Signaling.

Signal Transduction Program, Sanford-Burnham Medical Research Institute, La Jolla, CA.
Oncotarget (Impact Factor: 6.36). 07/2013; 4(8). DOI: 10.18632/oncotarget.1130
Source: PubMed


We previously identified SMIP004 (N-(4-butyl-2-methyl-phenyl) acetamide) as a novel inducer of cancer-cell selective apoptosis of human prostate cancer cells. SMIP004 decreased the levels of positive cell cycle regulators, upregulated cyclin-dependent kinase inhibitors, and resulted in G1 arrest, inhibition of colony formation in soft agar, and cell death. However, the mechanism of SMIP004-induced cancer cell selective apoptosis remained unknown. Here, we used chemical genomic and proteomic profiling to unravel a SMIP004-induced pro-apoptotic pathway, which initiates with disruption of mitochondrial respiration leading to oxidative stress. This, in turn, activates two pathways, one eliciting cell cycle arrest by rapidly targeting cyclin D1 for proteasomal degradation and driving the transcriptional downregulation of the androgen receptor, and a second pathway that activates pro-apoptotic signaling through MAPK activation downstream of the unfolded protein response (UPR). SMIP004 potently inhibits the growth of prostate and breast cancer xenografts in mice. Our data suggest that SMIP004, by inducing mitochondrial ROS formation, targets specific sensitivities of prostate cancer cells to redox and bioenergetic imbalances that can be exploited in cancer therapy.

Download full-text


Available from: Eric Lau, Jul 29, 2014
64 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mitochondrial (mt) dysfunction in gliomas has been linked to abnormalities of mt energy metabolism, marked by a metabolic shift from oxidative phosphorylation to glycolysis ("Warburg effect"), disturbances in mt membrane potential regulation and apoptotic signaling, as well as to somatic mutations involving the Krebs cycle enzyme isocitrate dehydrogenase. Evolving biological concepts with potential therapeutic implications include interaction between microtubule proteins and mitochondria (mt) in the control of closure of voltage-dependent anion channels and in the regulation of mt dynamics and the mt-endoplasmic reticulum network. The cytoskeletal protein βIII-tubulin, which is overexpressed in malignant gliomas, has emerged as a prosurvival factor associated in part with mt and also as a marker of chemoresistance. Mt-targeted therapeutic strategies that are discussed include the following: (1) metabolic modulation with emphasis on dichloroacetate, a pyruvate dehydrogenase kinase inhibitor; (2) tumor cell death via apoptosis induced by tricyclic antidepressants, microtubule-modulating drugs, and small molecules or compounds capable of inflicting reactive oxygen species-dependent tumor cell death; and (3) pretreatment mt priming and mt-targeted prodrug cancer therapy.
    Seminars in pediatric neurology 09/2013; 20(3):216-227. DOI:10.1016/j.spen.2013.09.003 · 2.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cellular unfolded protein response (UPR) is induced when endoplasmic reticulum (ER) is under stress. XBP-1S, the active isoform of X-box binding protein 1 (XBP-1), is a key regulator of UPR. Previously, we showed that a histone acetyltransferase (HAT), p300/CBP-associated factor (PCAF), binds to XBP-1S and functions as an activator of XBP-1S. Here, we identify general control nonderepressible 5 (GCN5), a HAT with 73% identity to PCAF, as a novel XBP-1S regulator. Both PCAF and GCN5 bind to the same domain of XBP-1S. Surprisingly, GCN5 potently blocks the XBP-1S-mediated transcription, including cellular UPR genes and latent membrane protein 1 of Epstein-Barr virus. Unlike PCAF, GCN5 acetylates XBP-1S and enhances nuclear retention and protein stability of XBP-1S. However, such GCN5-mediated acetylation of XBP-1S shows no effects on XBP-1S activity. In addition, the HAT activity of GCN5 is not required for repression of XBP-1S target genes. We further demonstrate that GCN5 inhibits XBP-1S-mediated transcription by disrupting the PCAF-XBP-1S interaction and preventing the recruitment of XBP-1S to its target genes. Taken together, our results represent the first work demonstrating that GCN5 and PCAF exhibit different functions and antagonistically regulate the XBP-1S-mediated transcription.
    Oncotarget 11/2014; 6(1). DOI:10.18632/oncotarget.2773 · 6.36 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A series of recent reports has suggested PGC1α-driven upregulation of mitochondrial oxidative phosphorylation as a selective vulnerability of drug-resistant cancers. Accordingly, chemical inhibitors of respiration led to selective eradication of such cancer cells due to their preferential sensitivity to mitochondrial production of reactive oxygen species. These insights create a timely opportunity for a biomarker guided application of already existing and newly emerging mitochondrial inhibitors in recurrent drug-resistant cancer, including lymphomas, melanomas, and other malignant diseases marked by increased mitochondrial respiration. Copyright © 2014 Elsevier Inc. All rights reserved.
    Cancer Cell 12/2014; 26(6):788-795. DOI:10.1016/j.ccell.2014.10.001 · 23.52 Impact Factor
Show more