Article

Performance Analysis of PMIPv6Based NEtwork MObility for Intelligent Transportation Systems

IEEE Transactions on Vehicular Technology (Impact Factor: 2.64). 01/2012; 61(1):74-85. DOI: 10.1109/TVT.2011.2157949

ABSTRACT While host mobility support for individual mobile hosts (MHs) has been widely investigated and developed over the past years, there has been relatively less attention to NEtwork MObility (NEMO). Since NEMO Basic Support (NEMO-BS) was developed, it has been the central pillar in Intelligent Transport Systems (ITS) communication architectures for maintaining the vehicle's Internet connectivity. As the vehicle moves around, it attaches to a new access network and is required to register a new address obtained from the new access network to a home agent (HA). This location update of NEMO-BS often results in unacceptable long handover latency and increased traffic load to the vehicle. To address these issues, in this paper, we introduce new NEMO support protocols, which rely on mobility service provisioning entities introduced in Proxy Mobile IPv6 (PMIPv6), as possible mobility support protocols for ITS. As a base protocol, we present PMIPv6-based NEMO (P-NEMO) to maintain the vehicle's Internet connectivity while moving and without participating in the location update management. In P-NEMO, the mobility management for the vehicle is supported by mobility service provisioning entities residing in a given PMIPv6 domain. To further improve handover performance, fast P-NEMO (FP-NEMO) has been developed as an extension protocol. FP-NEMO utilizes wireless L2 events to anticipate the vehicle's handovers. The mobility service provisioning entities prepare the vehicle's handover prior to the attachment of the vehicle to the new access network. Detailed handover procedures for P-NEMO and FP-NEMO are provided, and handover timing diagrams are presented to evaluate the performance of the proposed protocols. P-NEMO and FP-NEMO are compared with NEMO-BS in terms of traffic cost and handover latency.

0 Bookmarks
 · 
80 Views
  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: Seamless mobility in future generation networks, which are envisioned to be heterogeneous in nature, is an important issue. While Internet Engineering Task Force (IETF) work groups have standardized various mobility management protocols, such as Mobile IPv6 and Proxy Mobile IPv6, a comprehensive study of these protocols in terms of various performance characteristics is a challenging issue. Moreover, this study also considers the recent proposals from IETF in distributed mobility management (DMM) protocols. In this paper, a novel analytical model is developed for comparison of various mobility management protocols in terms of handover latency, as well as packet density, and packet arrival rate during the handover time by applying transport engineering principles in the field of telecommunication. The signaling cost analysis using signaling overhead incurred during protocol operations is given for each of these protocols. The number of packets that can be lost during the handover operation is also obtained using this model. Moreover, it presents a unified framework using which one can assess the performance characteristics of both host based and network based mobile IP protocols. One can also assess the performance of centralized and DMM approaches. The correctness of the proposed model is established by the fact that it leads to results similar to those obtained by applying some of the existing models. At the same time, the model allows one to obtain additional results showing the effect of packet density and packet arrival rate on the handover latency.
    Wireless Personal Communications 09/2014; 78(2):943-977. DOI:10.1007/s11277-014-1795-y · 0.98 Impact Factor
  • EURASIP Journal on Wireless Communications and Networking 01/2014; 2014(1):49. DOI:10.1186/1687-1499-2014-49 · 0.81 Impact Factor