Article

Headspace Analysis of Philippine Civet Coffee Beans Using Gas Chromatography-Mass Spectrometry and Electronic Nose

01/2011;

ABSTRACT Civet coffee, the most expensive and best coffee in the world, is an economically important export product of the Philippines. With a growing threat of food adulteration and counterfeiting, a need for quality authentication is essential to protect the integrity and strong market value of Philippine civet coffee. At present, there is no internationally accepted method of verifying whether a bean is an authentic civet coffee. This study presented a practical and promising approach to identify and establish the headspace qualitative profile of Philippine civet coffee using electronic nose (E-nose) and gas chromatography-mass spectrometry (GC-MS). E-nose analysis revealed that aroma characteristic is one of the most important quality indicators of civet coffee. The findings were supported by GC-MS analysis. Principal component analysis (PCA) exhibited a clearly separated civet coffees from their control beans. The chromatographic fingerprints indicated that civet coffees differed with their control beans in terms of composition and concentration of individual volatile constituents.

0 Bookmarks
 · 
163 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: This research paper reports on the findings of the first scientific investigation into the various physicochemical properties of the palm civet (Kopi Luwak coffee bean) from Indonesia and their comparison to the first African civet coffee beans collected in Ethiopia in eastern Africa. Examination of the palm civet (Kopi Luwak) and African civet coffee beans indicate that major physical differences exist between them especially with regards to their overall color. All civet coffee beans appear to possess a higher level of red color hue and being overall darker in color than their control counterparts. Scanning electron microscopy revealed that all civet coffee beans possessed surface micro-pitting (as viewed at 10,000× magnification) caused by the action of gastric juices and digestive enzymes during digestion. Large deformation mechanical rheology testing revealed that civet coffee beans were in fact harder and more brittle in nature than their control counterparts indicating that gestive juices were entering into the beans and modifying the micro-structural properties of these beans. SDS–PAGE also supported this observation by revealing that proteolytic enzymes were penetrating into all the civet beans and causing substantial breakdown of storage proteins. Differences were noted in the types of subunits which were most susceptible to proteolysis between civet types and therefore lead to differences in maillard browning products and therefore flavor and aroma profiles. This was confirmed by electronic nose analysis which revealed differences between the palm civet coffee (Kopi Luwak) and African civet coffee aroma profiles. Analytical techniques for the authentification of palm civet (Kopi Luwak) and African civet coffee are also explored. It would appear that SDS–PAGE may serve as the most reasonable and reliable test to help confirm the authenticity of civet coffee. Electronic nose data was able to distinguish both civet coffees from their control counterparts and further indicated that processing through the civets gastro-intestinal track substantially modified these coffees.
    Food Research International - FOOD RES INT. 01/2004; 37(9):901-912.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study is the second of two publications that investigate the interactions between volatile and nonvolatile components in coffee brew. The purpose here was to shed some light into the chemical mechanisms responsible for the decrease of volatile thiols when in contact with coffee nonvolatiles. A mixture of volatile thiols covering a large range of physicochemical properties was monitored over time in the presence of a coffee brew model. The binding potential was estimated by SPME-GC-MS. Additives inhibiting specific reaction pathways were preincubated with the coffee brew 1 h prior to addition of the volatile compounds. Degradation kinetics of the volatile thiols were characterized by their rate constants k(obs). The effect of individual additives was shown by calculating k(rel), the relative rate constant as compared to the reference without additive. The conclusion was that thiols, mainly responsible for the "roasty" and "burnt" notes, disappear via two main chemical mechanisms. The results suggest that nucleophilic addition is the major pathway for thiol degradation. Addition occurs on oxidized species generated in the matrix in the presence of air. This mechanism prevails for aliphatic thiols (e.g., ethanethiol, methanethiol). Benzylic thiols (such as 2-furfurylthiol) can react in parallel via another pathway that is slowed in the absence of oxygen and in the presence of a radical scavenger. This points to a radical mechanism, but further work is needed to support this hypothesis. A direct correlation between thiol hydrophobicity and the magnitude of the interactions was shown as well. Therefore, weak physical interactions or hydrophobic assistance accelerating chemical reactions cannot be excluded at this point of the study.
    Journal of Agricultural and Food Chemistry 07/2005; 53(11):4426-33. · 3.11 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: An electronic nose system for quality control of coffee is designed and tested. The system uses the Figaro TGS800 series sensors with an integrated heating element. The testing of the system is carried out using different types of coffee where it is proved successful in classifying the tested coffees and actual discrimination of ingredients into different classes [10]. Database based software is designed to interface the built hardware and to process the electronic nose signals before being classified.
    American Journal of Applied Sciences. 01/2004;

Full-text

View
43 Downloads
Available from
May 17, 2014