SMART Arm with Outcome-Triggered Electrical Stimulation: A Pilot Randomized Clinical Trial

Discipline of Physiotherapy, School of Public Health, Tropical Medicine & Rehabilitation Sciences, James Cook University, Townsville, Australia Division of Physiotherapy, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Australia.
Topics in Stroke Rehabilitation (Impact Factor: 1.22). 07/2013; 20(4):289-98. DOI: 10.1310/tsr2004-289
Source: PubMed

ABSTRACT Background: The SMART (SensoriMotor Active Rehabilitation Training) Arm is a nonrobotic device designed to allow stroke survivors with severe paresis to practice reaching. It can be used with or without outcome-triggered electrical stimulation (OT-stim) to augment movement. The aim of this study was to evaluate the efficacy of SMART Arm training when used with or without OT-stim, in addition to usual care, as compared with usual care alone during inpatient rehabilitation. Methods: Eight stroke survivors received 20 hours of SMART Arm training over 4 weeks; they were randomly assigned to either (1) SMART Arm training with OT-stim or (2) SMART Arm training alone. Usual therapy was also provided. A historical cohort of 20 stroke survivors formed the control group and received only usual therapy. The primary outcome was Motor Assessment Scale Item 6, Upper Arm Function. Results: Findings for all participants were comparable at baseline. SMART Arm training, with or without OT-stim, led to a significantly greater improvement in upper arm function than usual therapy alone (P = .024). There was no difference in improvement between training with or without OT-stim. Initial motor severity and presence of OT-stim influenced the number of repetitions performed and the progression of SMART Arm training practice conditions. Conclusion: Usual therapy in combination with SMART Arm training, with or without OT-stim, appears to be more effective than usual therapy alone for stroke survivors with severe paresis. These findings warrant further investigation into the benefits of SMART Arm training for stroke survivors with severe paresis undergoing inpatient rehabilitation during the subacute phase of recovery.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objectives. (1) To develop two independent measurement scales for use as items assessing hand movements and hand activities within the Motor Assessment Scale (MAS), an existing instrument used for clinical assessment of motor performance in stroke survivors; (2) To examine the psychometric properties of these new measurement scales. Design. Scale development, followed by a multicenter observational study. Setting. Inpatient and outpatient occupational therapy programs in eight hospital and rehabilitation facilities in the United States and Canada. Participants. Patients (N = 332) receiving stroke rehabilitation following left (52%) or right (48%) cerebrovascular accident; mean age 64.2 years (sd 15); median 1 month since stroke onset. Intervention. Not applicable. Main Outcome Measures. Data were tested for unidimensionality and reliability, and behavioral criteria were ordered according to difficulty level with Rasch analysis. Results. The new scales assessing hand movements and hand activities met Rasch expectations of unidimensionality and reliability. Conclusion. Following a multistep process of test development, analysis, and refinement, we have redesigned the two scales that comprise the hand function items on the MAS. The hand movement scale contains an empirically validated 10-behavior hierarchy and the hand activities item contains an empirically validated 8-behavior hierarchy.
    01/2014; 2014:730298. DOI:10.1155/2014/730298
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recovery of upper limb function after stroke is poor. The acute to subacute phase after stroke is the optimal time window to promote the recovery of upper limb function. The dose and content of training provided conventionally during this phase is however, unlikely to be adequate to drive functional recovery, especially in the presence of severe motor disability. The current study concerns an approach to address this shortcoming, through evaluation of the SMART Arm, a non-robotic device that enables intensive and repetitive practice of reaching by stroke survivors with severe upper limb disability, with the aim of improving upper limb function. The outcomes of SMART Arm training with or without outcome-triggered electrical stimulation (OT-stim) to augment movement and usual therapy will be compared to usual therapy alone. A prospective, assessor-blinded parallel, three-group randomised controlled trial is being conducted. Seventy-five participants with a first-ever unilateral stroke less than 4 months previously, who present with severe arm disability (three or fewer out of a possible six points on the Motor Assessment Scale [MAS] Item 6), will be recruited from inpatient rehabilitation facilities. Participants will be randomly allocated to one of three dose-matched groups: SMART Arm training with OT-stim and usual therapy; SMART Arm training without OT-stim and usual therapy; or usual therapy alone. All participants will receive 20 hours of upper limb training over four weeks. Blinded assessors will conduct four assessments: pre intervention (0-weeks), post intervention (4-weeks), 26 weeks and 52 weeks follow-up. The primary outcome measure is MAS item 6. All analyses will be based on an intention-to-treat principle. By enabling intensive and repetitive practice of a functional upper limb task during inpatient rehabilitation, SMART Arm training with or without OT-stim in combination with usual therapy, has the potential to improve recovery of upper limb function in those with severe motor disability. The immediate and long-term effects of SMART Arm training on upper limb impairment, activity and participation will be explored, in addition to the benefit of training with or without OT-stim to augment movement when compared to usual therapy alone.Trial registrationACTRN12608000457347.
    BMC Neurology 07/2013; 13(1):71. DOI:10.1186/1471-2377-13-71 · 2.49 Impact Factor
    This article is viewable in ResearchGate's enriched format