Article

Co-crystal structure of a T-box riboswitch stem I domain in complex with its cognate tRNA.

National Heart, Lung and Blood Institute, 50 South Drive, MSC 8012, Bethesda, Maryland 20892-8012, USA.
Nature (Impact Factor: 42.35). 07/2013; DOI: 10.1038/nature12440
Source: PubMed

ABSTRACT In Gram-positive bacteria, T-box riboswitches regulate the expression of aminoacyl-tRNA synthetases and other proteins in response to fluctuating transfer RNA aminoacylation levels under various nutritional states. T-boxes reside in the 5'-untranslated regions of the messenger RNAs they regulate, and consist of two conserved domains. Stem I contains the specifier trinucleotide that base pairs with the anticodon of cognate tRNA. 3' to stem I is the antiterminator domain, which base pairs with the tRNA acceptor end and evaluates its aminoacylation state. Despite high phylogenetic conservation and widespread occurrence in pathogens, the structural basis of tRNA recognition by this riboswitch remains ill defined. Here we demonstrate that the ∼100-nucleotide T-box stem I is necessary and sufficient for specific, high-affinity (dissociation constant (Kd) ∼150 nM) tRNA binding, and report the structure of Oceanobacillus iheyensis glyQ stem I in complex with its cognate tRNA at 3.2 Å resolution. Stem I recognizes the overall architecture of tRNA in addition to its anticodon, something accomplished by large ribonucleoproteins such as the ribosome, or proteins such as aminoacyl-tRNA synthetases, but is unprecedented for a compact mRNA domain. The C-shaped stem I cradles the L-shaped tRNA, forming an extended (1,604 Å(2)) intermolecular interface. In addition to the specifier-anticodon interaction, two interdigitated T-loops near the apex of stem I stack on the tRNA elbow in a manner analogous to those of the J11/12-J12/11 motif of RNase P and the L1 stalk of the ribosomal E-site. Because these ribonucleoproteins and T-boxes are unrelated, this strategy to recognize a universal tRNA feature probably evolved convergently. Mutually induced fit of stem I and the tRNA exploiting the intrinsic flexibility of tRNA and its conserved post-transcriptional modifications results in high shape complementarity, which in addition to providing specificity and affinity, globally organizes the T-box to orchestrate tRNA-dependent transcription regulation.

0 Followers
 · 
119 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The T box riboswitch regulates many amino acid-related genes in Gram-positive bacteria. T box riboswitch-mediated gene regulation was shown previously to occur at the level of transcription attenuation via structural rearrangements in the 5' untranslated (leader) region of the mRNA in response to binding of a specific uncharged tRNA. In this study, a novel group of isoleucyl-tRNA synthetase gene (ileS) T box leader sequences found in organisms of the phylum Actinobacteria was investigated. The Stem I domains of these RNAs lack several highly conserved elements that are essential for interaction with the tRNA ligand in other T box RNAs. Many of these RNAs were predicted to regulate gene expression at the level of translation initiation through tRNA-dependent stabilization of a helix that sequesters a sequence complementary to the Shine-Dalgarno (SD) sequence, thus freeing the SD sequence for ribosome binding and translation initiation. We demonstrated specific binding to the cognate tRNA(Ile) and tRNA(Ile)-dependent structural rearrangements consistent with regulation at the level of translation initiation, providing the first biochemical demonstration, to our knowledge, of translational regulation in a T box riboswitch.
    Proceedings of the National Academy of Sciences 01/2015; 112(4). DOI:10.1073/pnas.1424175112 · 9.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Riboswitches are structured noncoding RNA elements that control the expression of their embedding messenger RNAs by sensing the intracellular concentration of diverse metabolites. As the name suggests, riboswitches are dynamic in nature so that studying their inherent conformational dynamics and ligand-mediated folding is important for understanding their mechanism of action. Single-molecule fluorescence energy transfer (smFRET) microscopy is a powerful and versatile technique for studying the folding pathways and intra- and intermolecular dynamics of biological macromolecules, especially RNA. The ability of smFRET to monitor intramolecular distances and their temporal evolution make it a particularly insightful tool for probing the structure and dynamics of riboswitches. Here, we detail the general steps for using prism-based total internal reflection fluorescence microscopy for smFRET studies of the structure, dynamics, and ligand-binding mechanisms of riboswitches.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Transfer RNAs (tRNAs) are cellular courier molecules that decipher the genetic code in messenger RNAs and enable the transfer of appropriate esterified amino acids to the growing peptide chain. The preparation of biophysical quantities of homogeneous aminoacylated tRNAs has remained a significant technical challenge. This is primarily due to the difficulty in removing contaminating nonaminoacylated tRNAs that are have very similar properties overall, as well as the hydrolytic instability of the aminoacyl linkage. We describe a flexible, scalable method to prepare homogeneous aminoacylated tRNAs that is also broadly compatible with mutant, misacylated, or otherwise aberrant tRNAs and other RNAs. This method combines ribozyme-mediated aminoacylation with reversible N-pentenoylation of the esterified amino acid, which not only protects against spontaneous deacylation but also provides a hydrophobic purification handle. This protocol makes it straightforward to produce biophysical quantities of natural and unnatural aminoacylated tRNAs and has proven essential for mechanistic investigations of the T-box riboswitches.