The microtubule binding properties of CENP-E's C-terminus and CENP-F

Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA.
Journal of Molecular Biology (Impact Factor: 4.33). 07/2013; 28(22). DOI: 10.1016/j.jmb.2013.07.027
Source: PubMed


CENP-E (Centromere Protein E) and CENP-F, also known as mitosin, are large, multi-functional proteins associated with the outer kinetochore. CENP-E features a well-characterized kinesin motor domain at its N-terminus and a second microtubule-binding domain at its C-terminus of unknown function. CENP-F is important for the formation of proper kinetochore-microtubule attachment and, like CENP-E, contains two microtubule-binding domains at its termini. While the importance of these proteins is known, the details of their interactions with microtubules have not yet been investigated. We have biochemically and structurally characterized the microtubule-binding properties of the amino- and carboxyl-terminal domains of CENP-F as well as the carboxyl-terminal (non-kinesin) domain of CENP-E. CENP-E's C-terminus and CENP-F's N-terminus bind microtubules with similar affinity to the well-characterized Ndc80 complex, while CENP-F's C-terminus shows much lower affinity. Electron microscopy analysis reveals that all of these domains engage the microtubule surface in a disordered manner, suggesting that these factors have no favored binding geometry and may allow for initial side-on attachments early in mitosis.

23 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although chromosome partitioning during mitosis is well studied, the molecular mechanisms that allow proper segregation of cytoplasmic organelles in human cells are poorly understood. Here we show that mitochondria interact with growing microtubule tips and are transported towards the daughter cell periphery at the end of mitosis. This phenomenon is promoted by the direct and cell cycle-dependent interaction of the mitochondrial protein Miro and the cytoskeletal-associated protein Cenp-F. Cenp-F is recruited to mitochondria by Miro at the time of cytokinesis and associates with microtubule growing tips. Cells devoid of Cenp-F or Miro show decreased spreading of the mitochondrial network as well as cytokinesis-specific defects in mitochondrial transport towards the cell periphery. Thus, Miro and Cenp-F promote anterograde mitochondrial movement and proper mitochondrial distribution in daughter cells.
    Nature Communications 08/1980; 6. DOI:10.1038/ncomms9015 · 11.47 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This interdisciplinary volume collates research work on kinesins and cancer. Authors attempt to validate members of the kinesin superfamily as potential targets for drug development in cancer chemotherapy. The work begins by highlighting the importance of kinesins, summarising current knowledge and how they are shown to be crucial for mitosis. Chapters go on to explore how this family of proteins are emerging as a novel target for chemotherapeutic intervention and drug development. Readers will learn how kinesins travel along microtubules to fulfill their many roles in intracellular transport or cell division. Several compounds that inhibit two mitotic kinesins (called Eg5 and CENP-E) have entered Phase I and II clinical trials and are explored in these chapters. Additional mitotic kinesins are currently being validated as drug targets, raising the possibility that the repertoire of kinesin-based drug targets may expand in the future. The book is suitable as a reference standard for the field of kinesins and cancer. It will interest those in academia and pharmaceutical companies, and anyone with an interest in the medical relevance of these proteins, which cutting edge methodologies are now enabling us to understand in astonishing detail.
    Kinesins and Cancer, Edited by Frank Kozielski, 01/2015: chapter 6 - Down-Regulating CENP-E Activity: For Better or for Worse.: pages 87-99; Springer., ISBN: 978-94-017-9732-0
  • [Show abstract] [Hide abstract]
    ABSTRACT: Firm attachments between kinetochores and dynamic spindle microtubules (MTs) are important for accurate chromosome segregation. Centromere protein F (CENP-F) has been shown to include two MT-binding domains, so it may participate in this key mitotic process. Here, we show that the N-terminal MT-binding domain of CENP-F prefers curled oligomers of tubulin relative to MT walls by approximately fivefold, suggesting that it may contribute to the firm bonds between kinetochores and the flared plus ends of dynamic MTs. A polypeptide from CENP-F's C terminus also bound MTs, and either protein fragment diffused on a stable MT wall. They also followed the ends of dynamic MTs as they shortened. When either fragment was coupled to a microbead, the force it could transduce from a shortening MT averaged 3-5 pN but could exceed 10 pN, identifying CENP-F as a highly effective coupler to shortening MTs. © 2015 Volkov et al.
    The Journal of Cell Biology 06/2015; 209(6):813-28. DOI:10.1083/jcb.201408083 · 9.83 Impact Factor