Article

Interplay between magnetism and superconductivity in EuFe2-xCoxAs2 studied by 57Fe and 151Eu Mössbauer spectroscopy

Physical review. B, Condensed matter (Impact Factor: 3.77). 01/2011; 84. DOI: 10.1103/PhysRevB.84.174503

ABSTRACT The compound EuFe2-xCoxAs2 was investigated by means of 57Fe and 151Eu Mössbauer spectroscopy versus temperature (4.2-300 K) for x = 0 (parent), x = 0.34-0.39 (superconductor), and x = 0.58 (overdoped). It was found that the spin density wave (SDW) is suppressed by Co substitution; however, it survives in the region of superconductivity, but iron spectra exhibit some nonmagnetic components in the superconducting region. Europium orders magnetically, regardless of the cobalt concentration, with the spin reorientation from the a-axis in the parent compound toward the c-axis with increasing replacement of iron by cobalt. The reorientation takes place close to the a-c plane. Some trivalent europium appears in EuFe2-xCoxAs2 versus substitution due to the chemical pressure induced by Co atoms, and it experiences some transferred hyperfine field from Eu2+. Iron experiences some transferred field due to the europium ordering for substituted samples in the SDW and nonmagnetic state both, while the transferred field is undetectable in the parent compound. Superconductivity coexists with the 4f-europium magnetic order within the same volume. It seems that superconductivity has some filamentary character in EuFe2-xCoxAs2, and it is confined to the nonmagnetic component seen by the iron Mössbauer spectroscopy.

0 Bookmarks
 · 
23 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: (57)Fe Mössbauer spectroscopy was applied to investigate the superconductor parent compound Fe(1+x)Te for x = 0.06, 0.10, 0.14, 0.18 within the temperature range 4.2-300 K. A spin density wave (SDW) within the iron atoms occupying regular tetrahedral sites was observed, with the square root of the mean square amplitude at 4.2 K varying between 9.7 and 15.7 T with increasing x. Three additional magnetic spectral components appeared due to the interstitial iron distributed over available sites between the Fe-Te layers. The excess iron showed hyperfine fields at approximately 16, 21 and 49 T for three respective components at 4.2 K. The component with a large field of 49 T indicated the presence of isolated iron atoms with large localized magnetic moments in interstitial positions. Magnetic ordering of the interstitial iron disappeared in accordance with the fallout of the SDW with increasing temperature.
    Journal of Physics Condensed Matter 09/2012; 24(38):386006. · 2.22 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recent measurements of the doping dependence of the London penetration depth λ(x) at low T in clean samples of isovalent BaFe_{2}(As_{1-x}P_{x})_{2} at T≪T_{c} [Hashimoto et al., Science 336, 1554 (2012)] revealed a peak in λ(x) near optimal doping x=0.3. The observation of the peak at T≪T_{c}, points to the existence of a quantum critical point beneath the superconducting dome. We associate such a quantum critical point with the onset of a spin-density-wave order and show that the renormalization of λ(x) by critical magnetic fluctuations gives rise to the observed feature. We argue that the case of pnictides is conceptually different from a one-component Galilean invariant Fermi liquid, for which correlation effects do not cause the renormalization of the London penetration depth at T=0.
    Physical Review Letters 04/2013; 110(17):177003. · 7.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Detailed (57)Fe Mössbauer spectroscopy measurements on superconducting NaFeAs powder samples have been performed in the temperature range 13 K ≤ T < 300 K. The (57)Fe spectra recorded in the paramagnetic range (T > TN ≈ 46 K) are discussed supposing that most of the Fe(2+) ions are located in distorted (FeAs4) tetrahedra of NaFeAs phase, while an additional minor (<10%) component of the spectra corresponds to impurity or intergrowth NaFe2As2 phase with a nominal composition near NaFe2As2. Our results reveal that the structural transition (TS ≈ 55 K) has a weak effect on the electronic structure of iron ions, while at T ≤ TN the spectra show a continuous distribution of hyperfine fields HFe. The shape of these spectra is analyzed in terms of two models: (i) an incommensurate spin density wave modulation of iron magnetic structure, (ii) formation of a microdomain structure or phase separation. It is shown that the hyperfine parameters obtained using these two methods have very similar values over the whole temperature range. Analysis of the temperature dependence HFe(T) with the Bean-Rodbell model leads to ζ = 1.16 ± 0.05, suggesting that the magnetic phase transition is first order in nature. A sharp evolution of the VZZ(T) and η(T) parameters of the full Hamiltonian of hyperfine interactions near T ≈ (TN,TS) is interpreted as a manifestation of the anisotropic electron redistribution between the dxz-, dyz- and dxy-orbitals of the iron ions.
    Journal of Physics Condensed Matter 08/2013; 25(34):346003. · 2.22 Impact Factor

Full-text

View
0 Downloads
Available from