Article

Amyloid-beta Inhibits No-cGMP Signaling in a CD36- and CD47Dependent Manner

Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America.
PLoS ONE (Impact Factor: 3.53). 12/2010; 5(12). DOI: 10.1371/journal.pone.0015686
Source: PubMed

ABSTRACT Amyloid-β interacts with two cell surface receptors, CD36 and CD47, through which the matricellular protein thrombospondin-1 inhibits soluble guanylate cyclase activation. Here we examine whether amyloid-β shares this inhibitory activity. Amyloid-β inhibited both drug and nitric oxide-mediated activation of soluble guanylate cyclase in several cell types. Known cGMP-dependent functional responses to nitric oxide in platelets and vascular smooth muscle cells were correspondingly inhibited by amyloid-β. Functional interaction of amyloid-β with the scavenger receptor CD36 was indicated by inhibition of free fatty acid uptake via this receptor. Both soluble oligomer and fibrillar forms of amyloid-β were active. In contrast, amyloid-β did not compete with the known ligand SIRPα for binding to CD47. However, both receptors were necessary for amyloid-β to inhibit cGMP accumulation. These data suggest that amyloid-β interaction with CD36 induces a CD47-dependent signal that inhibits soluble guanylate cyclase activation. Combined with the pleiotropic effects of inhibiting free fatty acid transport via CD36, these data provides a molecular mechanism through which amyloid-β can contribute to the nitric oxide signaling deficiencies associated with Alzheimer's disease.

Download full-text

Full-text

Available from: David D Roberts, Jul 30, 2015
0 Followers
 · 
123 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cardiac patients often are obese and have hypertension, but in most studies these conditions are investigated separately. Here, we aimed at 1) elucidating the interaction of metabolic and mechanophysical stress in the development of cardiac dysfunction in mice and 2) preventing this interaction by ablation of the fatty acid transporter CD36. Male wild-type (WT) C57Bl/6 mice and CD36(-/-) mice received chow or Western-type diet (WTD) for 10 wk and then underwent a sham surgery or transverse aortic constriction (TAC) under anesthesia. After a 6-wk continuation of the diet, cardiac function, morphology, lipid profiles, and molecular parameters were assessed. WTD administration affected body and organ weights of WT and CD36(-/-) mice, but it affected only plasma glucose and insulin concentrations in WT mice. Cardiac lipid concentrations increased in WT mice receiving WTD, decreased in CD36(-/-) on chow, and remained unchanged in CD36(-/-) receiving WTD. TAC induced cardiac hypertrophy in WT mice on chow but did not affect cardiac function and cardiac lipid concentrations. WTD or CD36 ablation worsened the outcome of TAC. Ablation of CD36 protected against the WTD-related aggravation of cardiac functional and structural changes induced by TAC. In conclusion, cardiac dysfunction and remodeling worsen when the heart is exposed to two stresses, metabolic and mechanophysical, at the same time. CD36 ablation prevents the metabolic stress resulting from a WTD. Thus, metabolic conditions are a critical factor for the compromised heart and provide new targets for metabolic manipulation in cardioprotection.
    AJP Endocrinology and Metabolism 06/2011; 301(4):E618-27. DOI:10.1152/ajpendo.00106.2011 · 4.09 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Vascular smooth muscle (VSM) proliferation and migration are key components in vessel remodeling. Cyclic nucleotide signaling is protective and has long-served as a therapeutic target against undesired VSM growth. The present work analyzed the effects of the soluble guanylate cyclase (sGC) stimulator 3-(4-amino-5-cyclopropylpyrimidine-2-yl)-1-(2-fluorobenzyl)-1H-pyrazolo[3,4-b]pyridine [BAY 41-2272 (BAY)] on VSM growth, and we hypothesize that BAY has the capacity to reduce proliferation and migration via cyclic nucleotide-driven kinase signaling. Perivascular BAY postballoon injury reduced neointimal growth by ∼ 40% compared with vehicle controls after 2 weeks. In VSM cells, BAY (10 μM) reduced proliferation by ∼ 40% after 72 h and migration by ∼ 40% after 6 h and ∼ 60% after 18 h without deleterious effects on cell viability. cGMP content peaked (248 ×) 20 min after BAY treatment and remained elevated (140 ×) through 60 min; however, BAY did not affect cAMP levels compared with controls. Conventional and In-Cell Western analyses showed increases in vasodilator-stimulated phosphoprotein (VASP) phosphorylation (pVASP) at serines 239 (3 ×) and 157 (2 ×), respective markers of cGMP- and cAMP-directed protein kinases (PKG and PKA, respectively). The PKG inhibitor YGRKKRRQRRRPPLRKKKKKH peptide (DT-2) completely reversed BAY-mediated increases in pVASPSer(239) and BAY-mediated inhibition of migration. In comparison, the PKA inhibitor peptide PKI further potentiated BAY-stimulated pVASPSer(157) and pVASPSer(239) and partially reversed the antiproliferative effects of BAY. This is the first report demonstrating the effectiveness of BAY in reducing neointimal growth with direct evidence for PKG-specific antimigratory and PKA-specific antiproliferative mechanisms. Conclusively, the sGC stimulator BAY reduces VSM growth through cGMP-dependent PKG and PKA processes, providing support for continued evaluation of its clinical utility.
    Journal of Pharmacology and Experimental Therapeutics 08/2011; 339(2):394-402. DOI:10.1124/jpet.111.183400 · 3.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Matricellular proteins play diverse roles in modulating cell behavior by engaging specific cell surface receptors and interacting with extracellular matrix proteins, secreted enzymes, and growth factors. Studies of such interactions involving thrombospondin-1 have revealed several physiological functions and roles in the pathogenesis of injury responses and cancer, but the relatively mild phenotypes of mice lacking thrombospondin-1 suggested that thrombospondin-1 would not be a central player that could be exploited therapeutically. Recent research focusing on signaling through its receptor CD47, however, has uncovered more critical roles for thrombospondin-1 in acute regulation of cardiovascular dynamics, hemostasis, immunity, and mitochondrial homeostasis. Several of these functions are mediated by potent and redundant inhibition of the canonical nitric oxide pathway. Conversely, elevated tissue thrombospondin-1 levels in major chronic diseases of aging may account for the deficient nitric oxide signaling that characterizes these diseases, and experimental therapeutics targeting CD47 show promise for treating such chronic diseases as well as acute stress conditions that are associated with elevated thrombospondin-1 expression.
    Matrix biology: journal of the International Society for Matrix Biology 04/2012; 31(3):162-9. DOI:10.1016/j.matbio.2012.01.005 · 3.65 Impact Factor
Show more