Long-term atmospheric measurements of C 1–C 5 alkyl nitrates in the Pearl River Delta region of southeast China

Department of Chemistry, University of California-Irvine, Irvine, CA 92697, USA; Department of Civil and Structural Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong; National Center for Atmospheric Research, Boulder, CO 80307, USA; Division of Marine and Atmospheric Chemistry, University of Miami, Miami, FL 33149, USA
Atmospheric Environment (Impact Factor: 3.11). 01/2006; 40(9):1619-1632. DOI: 10.1016/j.atmosenv.2005.10.062

ABSTRACT Mixing ratios of seven C1–C5 alkyl nitrates (RONO2) were measured during a 16-month study (August 2001–December 2002) at Tai O, a coastal site 30km west of central Hong Kong in the Pearl River Delta, the fastest-growing industrial region in the world. The C3–C4 (rather than C1–C2) RONO2 were most abundant throughout the study, showing the importance of photochemical (rather than marine) RONO2 production in the sampled air. A lack of methyl nitrate (MeONO2) enhancement during summer, when the prevailing winds are from the ocean, indicates that the South China Sea is not a region of strong RONO2 emissions. By contrast, MeONO2 levels during pollution episodes (up to 25 parts per trillion by volume (pptv)) were the highest that our group has recorded during urban photochemical RONO2 production, as opposed to marine emissions or biomass burning. The highest summed RONO2 level of the study (204pptv) was measured in the afternoon of 7 November 2002, during an intense pollution episode that captured the highest ozone (O3) level ever recorded in Hong Kong (203ppbv). During pollution episodes, the average ratio of O3 to summed RONO2 was roughly 1000:1 in freshly polluted air (ethyne/CO∼3–5pptv/ppbv) and 500:1 in very freshly polluted air (ethyne/CO∼6–8pptv/ppbv). Ozone and RONO2 share a common photochemical source, and their good correlation in pollution plumes shows that RONO2 can be used as a tracer of photochemical O3 production. Even MeONO2 showed similar diurnal variations as the C2–C5 RONO2, indicating a strong photochemical source despite its very slow photochemical production from methane oxidation. The decomposition of longer-chain alkoxy radicals also does not explain the high MeONO2 levels, and rough calculations show that methoxy radical reaction with NO2 appears to be a viable alternate pathway for MeONO2 production in polluted atmospheres, though further measurements and modeling are required to confirm this mechanism.

  • [Show abstract] [Hide abstract]
    ABSTRACT: For the 2008 Beijing Olympic Games full-scale control (FSC) of atmospheric pollution was implemented to improve the air quality from 20 July to 20 September 2008, resulting in a significant decrease in the emission of pollutants in urban Beijing, especially vehicular emissions. The combination of reduced emissions and weather condition changes provided us with a unique opportunity to investigate urban atmospheric chemistry. Hydrogen peroxide (H2O2) and organic peroxides play significant roles in atmospheric processes, such as the cycling of HOx radicals and the formation of secondary sulfate aerosols and secondary organic aerosols. We measured atmospheric H2O2 and organic peroxides in urban Beijing, at the Peking University campus, from 12 July to 30 September, before and during the FSC. The major peroxides observed were H2O2, methyl hydroperoxide (MHP), and peroxyacetic acid (PAA), having maximal mixing ratios of 2.34, 0.95, and 0.17 ppbv (parts per billion by volume), respectively. Other organic peroxides were detected occasionally, such as bis-hydroxymethyl hydroperoxide, hydroxymethyl hydroperoxide, ethyl hydroperoxide, and 1-hydroxyethyl hydroperoxide. On sunny days the concentrations of H2O2, MHP, and PAA exhibited pronounced diurnal variations, with a peak in the afternoon (1500–1900) and, occasionally, a second peak in the evening (2000–0200). The night peaks can be attributed to local night production from the ozonolysis of alkenes, coupled with the reaction between NO3 radicals and organic compounds. Sunny-day weather dominated during 16–26 July, and we found that the concentrations of H2O2, MHP, and PAA increased strikingly on 22–26 July, compared with the concentrations during 16–19 July. This effect was mainly attributed to the NOx (NO and NO2) decline because of the FSC, due to (i) the suppressing effect of NO and NO2 on the production of peroxides and (ii) the indirect effect of reduced NOx on the concentration of peroxides via O3 production in the volatile organic compound-sensitive area. Although the time period from 29 July to 15 August fell within the FSC, the concentrations of H2O2, MHP, and PAA decreased significantly. This can be explained by a combination of chemical and physical factors during this period, when rainy- and cloudy-day weather dominated. Weaker irradiation and lower temperatures resulted in a lower photochemical production of peroxides; the higher humidity resulted in their greater loss through their aqueous-phase oxidation of S(IV) and through heterogeneous removal, and lower temperatures and higher nighttime humidity resulted in a quicker surface deposition of peroxides. Furthermore, our observations seem to imply that the heterogeneous removal of H2O2 is faster than that of MHP, as indicated by the strong negative correlation between the H2O2-to-MHP ratio and the aerosol surface area.
    Journal of Geophysical Research Atmospheres 01/2010; 115. · 3.44 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: AbstractA comprehensive suite of volatile organic compounds (VOCs) was measured at the semirural Boulder Atmospheric Observatory (BAO) in northeast Colorado during the Nitrogen, Aerosol Composition, and Halogens on a Tall Tower (NACHTT) campaign during the winter of 2011. A signature of elevated nonmethane hydrocarbon (NMHC) mixing ratios was observed throughout the campaign. The C2‐C5 alkane mixing ratios were an order of magnitude greater than the regional background. Light alkane mixing ratios were similar to those at urban sites impacted by petrochemical industry emissions with ethane and propane reaching maximums of over 100 ppbv. The mean (± standard deviation) calculated total OH reactivity (7.0 ± 5.0 s−1) was also similar to urban sites. Analysis of VOC wind direction dependence, emission ratios with tracer compounds, and vertical profiles up to 250 m implicated regional natural gas production activities as the source of the elevated VOCs to the northeast of BAO and urban combustion emissions as the major VOC source to the south of BAO. Elevated acetonitrile and dimethyl sulfide mixing ratios were also associated with natural gas emissions. Fluxes of natural gas associated NMHCs were determined to estimate regional emission rates which ranged from 40 ± 14 Gg yr−1 for propane to 0.03 ± 0.01 Gg yr−1 for n‐nonane. These emissions have the potential to impact downwind air quality as natural gas associated NMHCs comprised ≈24% of the calculated OH reactivity. The measurements described here provide a baseline for determining the efficacy of future policies designed to control emissions from natural gas production activities.
    Journal of Geophysical Research: Atmospheres. 09/2013; 118(18).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The meteorological mechanisms for lofting trace gases and aerosols out of the planetary boundary layer (PBL) into the free troposphere are key to understanding local air pollution problems as well as regional and global atmospheric chemistry and climate issues. Over the North American continent, convective storms and lifting in warm conveyor belts transport pollutants into the free troposphere. Little is known about the vertical distribution of pollutants and dust over east Asia, and the processes leading to transport, transformation, and removal of these species remain uncertain. To provide insight into these mechanisms, we report on eight flights based out of Shenyang in NE China as part of the U.S./China EAST-AIRE project conducted in April 2005. We evaluate profiles of trace species, along with back trajectories and satellite data, in the meteorological context of cyclonic systems. The warm-sector PBL air ahead of a cold front was highly polluted, while in the free troposphere concentrations of trace gases and aerosols were lower, but well above background; we measured ∼300 ppb CO, ∼2 ppb SO2, ∼70 ppb O3, and ∼ 8 × 10−5 m−1 aerosol scattering between ∼1000 and 4000 m altitude. Satellite observations indicate that the entire plume contained almost 105 tons of SO2 and that the gas decayed with a lifetime of 3–5 d. Roughly the same mass of aerosol was transported into the free troposphere. Over the east Asian continent, dry convection appears to dominate with warm conveyor belts first coming into play as the cyclonic systems move off the coast.
    Journal of Geophysical Research Atmospheres 01/2007; 112. · 3.44 Impact Factor

Full-text (2 Sources)

Available from
May 21, 2014