Article

Activation of STAT3 is involved in neuroprotection by electroacupuncture pretreatment via cannabinoid CB1 receptors in rats

Department of Anesthesiology, Xijing Hospital, Forth Military Medical University, Xi'an, China.
Brain research (Impact Factor: 2.83). 07/2013; 1529. DOI: 10.1016/j.brainres.2013.07.006
Source: PubMed

ABSTRACT Pretreatment with electroacupuncture (EA) attenuates cerebral ischemic injury through the endocannabinoid system, although the molecular mechanisms mediate this neuroprotection are unknown. It is well-known that signal transducer and activator of transcription 3 (STAT3) plays an essential role in cell survival and proliferation. Therefore, we investigated whether STAT3 is involved in EA pretreatment-induced neuroprotection via cannabinoid CB1 receptors (CB1R) after transient focal cerebral ischemia in rats. Two hours after EA pretreatment, focal cerebral ischemia was induced by middle cerebral artery occlusion (MACO) for 120 minutes. The expression of pSTAT3(Ser727), which is necessary for STAT3 activation, was examined in the ipsilateral ischemic penumbra. Infarct volumes and neurological scores were evaluated at 72 hours after MACO in the presence or absence of the STAT3 inhibitor peptide (PpYLKTK). Neuronal apoptosis and the Bax/Bcl-2 ratio were also evaluated 24 hours after reperfusion. Our results showed that EA pretreatment significantly enhanced neuronal expression of pSTAT3(Ser727) in the ischemic penumbra 6 hours after reperfusion. Moreover, EA pretreatment reduced infarct volume, improved neurological outcome, inhibited neuronal apoptosis and decreased the Bax/Bcl-2 ratio following reperfusion. The beneficial effects of EA were attenuated by PpYLKTK administered 30 minutes before MACO, and PpYLKTK effectively reversed the increase in pSTAT3(Ser727) expression. Furthermore, CB1R antagonist or CB1R knockdown with siRNA blocked the elevation of pSTAT3(Ser727) expression by EA pretreatment, whereas the two CB1R agonists increased STAT3 activation. In conclusion, EA pretreatment enhances STAT3 activation via CB1R to protect against cerebral ischemia, suggesting that STAT3 activation may be a novel target for stroke intervention.

0 Followers
 · 
92 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Neuroinflammation is important for the development of several neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and stroke. Since changes of cytokine level are critical for neuroinflammation in the brain, we investigated whether IL-32α overexpression could change neuroinflammation and, thus, affect stroke development. Middle cerebral artery occlusion (MCAO) induced development of ischemia, and ischemic neuronal cell death were reduced in IL-32α-overexpressing transgenic mice (IL-32α mice) brain through the decreased release of neuroinflammatory cytokines (IL-6, IL-1β, TNF-α) and activation of astrocytes, but enhancement of anti-neuroinflammatory cytokines (IL-10). Reactive oxygen species generation and lipid peroxidation as well as expression of inducible nitric oxide and cyclooxygenase-2 were also reduced in the IL-32α mice brain. Nuclear factor-kappa B (NF-κB), a critical transcriptional factor regulating neuroinflammation, was much lower, but activation of signal transducer and activator of transcription 3 (STAT3), which plays a crucial role in cell survival and proliferation, was much higher in IL-32α-overexpressing mice brain compared to those of wild-type mice brain. These results suggest that IL-32α can prevent cerebral ischemia damage via upregulation of anti-neuroinflammatory cytokine expression and STAT3 activation, but downregulation of neuroinflammatory cytokines and NF-κB activation.
    Molecular Neurobiology 05/2014; 51(2). DOI:10.1007/s12035-014-8739-0 · 5.29 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The present study examined the effect of enhancing fatty acid amide hydrolase (FAAH) substrate levels in vivo on Toll-like receptor (TLR)3-induced neuroinflammation. Systemic and central (i.c.v.) administration of the FAAH inhibitor URB597 increased hippocampal levels of the N-acylethanolamines palmitoylethanolamide and oleoylethanolamide, but not anandamide. Systemic URB597 increased IFNα, IFNγ and IL-6 expression following TLR3 activation and attenuated TLR3-induced IL-1β and TNFα expression. In comparison, central URB597 administration attenuated the TLR3-induced increase in TNFα and IFNγ expression (and associated downstream genes IP-10 and SOCS1), while concurrently increasing IL-10 expression. These data support an important role for FAAH-mediated regulation of TLR3-induced neuroinflammatory responses.
    Frontiers in Neuroscience 09/2014; DOI:10.1016/j.jneuroim.2014.09.002
  • [Show abstract] [Hide abstract]
    ABSTRACT: Electroacupuncture (EA) pretreatment elicits the neuroprotective effect against cerebral ischemic injury through cannabinoid receptor type 1 receptor (CB1R). In current study, we aimed to investigate whether the signal transducer and activator of transcription 3 (STAT3) and manganese superoxide dismutase (Mn-SOD) were involved in the antioxidant effect of EA pretreatment through CB1R. At 2 h after EA pretreatment, focal cerebral ischemic injury was induced by transient middle cerebral artery occlusion for 60 min in C57BL/6 mice. The expression of Mn-SOD in the penumbra was assessed by Western blot and immunoflourescent staining at 2 h after reperfusion. In the presence or absence of Mn-SOD small interfering RNA (siRNA), the neurological deficit score, the infarct volume, the terminal deoxynucleotidyl transferase-mediated dUDP-biotin nick end labeling (TUNEL) staining, and oxidative stress were evaluated. Furthermore, the Mn-SOD protein expression and phosphorylation of STAT3 at Y705 were also determined in the presence and absence of CB1R antagonists (AM251, SR141716) and CB1R agonists (arachidonyl-2-chloroethylamide (ACEA), WIN 55,212-2). EA pretreatment upregulated the Mn-SOD protein expression and Mn-SOD-positive neuronal cells at 2 h after reperfusion. EA pretreatment also attenuated oxidative stress, inhibited cellular apoptosis, and induced neuroprotection against ischemic damage, whereas these beneficial effects of EA pretreatment were reversed by knockdown of Mn-SOD. Mn-SOD upregulation and STAT3 phosphorylation by EA pretreatment were abolished by two CB1R antagonists, while pretreatment with two CB1R agonists increased the expression of Mn-SOD and phosphorylation level of STAT3. Mn-SOD upregulation by EA attenuates ischemic oxidative damage through CB1R-mediated STAT3 phosphorylation in stroke mice, which may represent one new mechanism of EA pretreatment-induced neuroprotection against cerebral ischemia.
    Molecular Neurobiology 11/2014; DOI:10.1007/s12035-014-8971-7 · 5.29 Impact Factor