Further support for a Cretaceous age for the feathered-dinosaur beds of Liaoning,China:New 40 Ar÷ 39 Ar dating of the Yixian and Tuchengzi Formations

Chinese Science Bulletin (Impact Factor: 1.37). 01/2002; 47(2):136-139. DOI: 10.1360/02tb9031

ABSTRACT We report new 40Ar÷39Ar dating results obtained from total fusion and incremental-heating analyses of sanidine and biotite from three tuffs found
interbedded within the fossil-bearing deposits of Liaoning, northeast China. The first is a new sample of the Bed 6 Sihetun
tuff from the Yixian Formation, previously dated by our team as middle Early Cretaceous, and recently considered by Lo et
al., partially reset due to metamorphism from a nearby basaltic sill. The second is the Yixian Bed 9 tuff from Hengdaozi considered
by Lo et al. to be unaffected by metamorphism and whose age, based on total fusion 40Ar÷39Ar dating of biotite, argues for a Jurassic age for the Yixian Formation. The third tuff is a previously undated tuff from
the upper part of the underlying Tuchengzi Formation. Single crystal total fusion 40Ar÷39Ar analyses of the Sihetun sanidine showed homogeneous radiogenic Ar, Ca÷K ratios, excellent reproducibility and gave a mean
age of 125.0±0.18 (1SD)±0.04 (SE) Ma. Single sanidine crystal total fusion 40Ar÷39Ar analyses of the Hengdaozi tuff gave a mean age of 125.0±0.19 (1SD)±0.04 (SE) Ma, which is indistinguishable from the Sihetun
tuff. The Tuchengzi Formation tuff gave a mean age of 139.4±0.19 (1SD)±0.05 (SE) Ma. Detailed laser incremental-heating analyses
of biotite from Sihetun, Hengdaozi, and Tuchengzi tuffs show disturbed Ar release patterns and evidence of trapped argon components.
We conclude from these analyses that the total fusion dates on biotite by Lo et al. are erroneously old and isotopic dating
of both biotite and sanidine from tuffs of the Yixian Formation point to a middle Early Cretaceous age. The upper part of
the Tuchengzi Formation can be referred to the Early Cretaceous.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tropical Southeast Asia harbors extraordinary species richness and in its entirety comprises four of the Earth's 34 biodiversity hotspots. Here, we examine the assembly of the Southeast Asian biota through time and space. We conduct meta-analyses of geological, climatic and biological (including 61 phylogenetic) datasets to test which areas have been the sources of long-term biological diversity in SE Asia, particularly in the pre-Miocene, Miocene and Plio-Pleistocene, and whether the respective biota have been dominated by in situ diversification, immigration and/or emigration, or equilibrium dynamics. We identify Borneo and Indochina, in particular, as major ‘evolutionary hotspots’ for a diverse range of fauna and flora. While most of the region's biodiversity is a result of both the accumulation of immigrants and in situ diversification, within-area diversification and subsequent emigration have been the predominant signals characterizing Indochina and Borneo's biota since at least the early Miocene. In contrast, colonization events are comparatively rare from younger volcanically active emergent islands such as Java, which show increased levels of immigration events. Few dispersal events were observed across the major biogeographic barrier of Wallace's Line. Accelerated efforts to conserve Borneo's flora and fauna in particular, currently housing the highest levels of Southeast Asian plant and mammal species richness, are critically required.
    Systematic Biology 07/2014; 63(6):879-901. · 11.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A new, large compsognathid theropod, Huaxiagnathus orientalis gen. et sp. nov., from the Early Cretaceous Yixian Formation deposits of Liaoning Province, People's Republic of China is described. The holotype specimen is nearly complete, lacking only the distal portion of the tail. It is the second largest theropod taxon discovered from Jehol Group sediments. Like all compsognathids, Huaxiagnathus has short forelimbs and a relatively unspecialised coelurosaur body plan. Previously, fairly complete skeletons existed for only two small‐bodied taxa of compsognathids, Compsognathus longipes from the Late Jurassic of Western Europe and Sinosauropteryx prima, also from the Yixian. The phylogenetic position of Huaxiagnathus orientalis was analysed using an extensive matrix of theropod characters from many taxa. Huaxiagnathus orientalis fell out at the base of the Compso‐gnathidae, as it lacks the forelimb adaptations of more derived compsognathids. The addition of Huaxiagnathus and the two other compsognathid species to our data matrix resulted in the placement of Compsognathidae near the base of Maniraptora. Furthermore, Alvarezsauridae, Paraves, and a monophyletic Therizinosauroidea + Oviraptorosauria clade fall out in an unresolved trichotomy in the strict consensus of our most parsimonious trees.
    Journal of Systematic Palaeontology 03/2010; 2(1):13-30. · 2.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lacewings (Neuroptera) normally bear four well-developed wings. There are a few brachypterous, micropterous or apterous species, found in several extant families; this wing reduction is usually associated with flightlessness. The only documented fossil neuropteran with reduced hind wings (modified to small haltere-like structures) is the enigmatic minute genus Mantispidiptera Grimaldi from the Late Cretaceous amber of New Jersey. In this paper, we report a new genus and species from the Early Cretaceous Yixian Formation of China (Dipteromantispa brevisubcosta n. gen. et n. sp.) resembling Mantispidiptera. We place these two genera in the new family Dipteromantispidae, n. fam. They bear well-developed forewings with reduced venation, and hind wings that are extremely modified as small structures resembling the halteres of Diptera. Dipteromantispidae n. fam. might be specialized descendants of some early Berothidae or of stem group Mantispidae + Berothidae. We presume that dipteromantispids were active fliers. This is a remarkable example of parallel evolution of wing structures in this neuropteran family and Diptera. (© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
    Fossil Record 02/2013; 16(1). · 0.91 Impact Factor

Full-text (2 Sources)

Available from
Jun 4, 2014