Jump of a domain and spectrally balanced domains

Annali di Matematica Pura ed Applicata (Impact Factor: 0.91). 12/2011; DOI: 10.1007/s10231-011-0199-9

ABSTRACT Let R be a locally finite-dimensional (LFD) integral domain. We investigate two invariants $${j_R(a)={{\rm inf}}\{{\rm height}P-{\rm height} Q\}}$$, where P and Q range over prime ideals of R such that $${Q\subset aR\subseteq P}$$, and $${j(R)={\rm sup}\{j_R(a)\}}$$ (called the jump of R), where a range over nonzero nonunit elements of R. We study the jump of polynomial ring and power series ring, we give many results involving jump, and specially we give more
interest to LFD-domain R such that j(R) = 1. We prove that if R is a finite-dimensional divided domain, then R is a Jaffard domain if and only if for all integer $${n,\,j(R[x_1,\ldots,x_n])=1}$$.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this paper, we study factorization in an integral domain R, that is, factoring elements of R into products of irreducible elements. We investigate several factorization properties in R which are weaker than unique factorization.
    Journal of Pure and Applied Algebra 12/2010; · 0.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: An integral domain R is an almost Bezout domain (respectively, almost valuation domain) if for each pair a;b 2 Rnf0g, there is a positive integer n = n(a;b) such that (an;bn) is principal (respectively, an j bn or bn j an): We show that a …nite intersection of almost valuation domains with the same quotient …eld is an almost Bezout domain. This generalizes the result that a …nite intersection of valuation domains with the same quotient …eld is a Bezout domain. We use our work to give a new characterization of Cohen-Kaplansky domains.
    Journal of Algebra - J ALGEBRA. 01/1994; 167(3):547-556.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Les AA. continuent l’étude des propriétés des anneaux intègres, qui sont plus faibles que les propriétés de anneaux factoriels, commencé dans la première partie du papier [cf. J. Pure Appl. Algebra 69, No. 1, 1-19 (1990; Zbl 0727.13007)]. Dans cette deuxième partie sont étudiés les comportements des propriétés pour les extensions d’anneaux intègres: localisations, en particulier par un système multiplicatif engendré par des éléments primes, et pour les réunions filtrantes d’anneaux.Reviewer: N.Radu (Bucureşti)
    Journal of Algebra 01/1992; 152(1):78-93. · 0.60 Impact Factor


Available from
Jun 4, 2014