Article

WESD - Weighted Spectral Distance for Measuring Shape Dissimilarity

Massachusetts General Hospital and Harvard Medical School, Charlestown.
IEEE Transactions on Software Engineering (Impact Factor: 5.69). 09/2013; 35(9):2284-97. DOI: 10.1109/TPAMI.2012.275
Source: PubMed

ABSTRACT This paper presents a new distance for measuring shape dissimilarity between objects. Recent publications introduced the use of eigenvalues of the Laplace operator as compact shape descriptors. Here, we revisit the eigenvalues to define a proper distance, called Weighted Spectral Distance (WESD), for quantifying shape dissimilarity. The definition of WESD is derived through analyzing the heat trace. This analysis provides the proposed distance with an intuitive meaning and mathematically links it to the intrinsic geometry of objects. We analyze the resulting distance definition, present and prove its important theoretical properties. Some of these properties include: 1) WESD is defined over the entire sequence of eigenvalues yet it is guaranteed to converge, 2) it is a pseudometric, 3) it is accurately approximated with a finite number of eigenvalues, and 4) it can be mapped to the $([0,1))$ interval. Last, experiments conducted on synthetic and real objects are presented. These experiments highlight the practical benefits of WESD for applications in vision and medical image analysis.

3 Followers
 · 
238 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this paper we present a novel approach for the intrinsic mapping of anatomical surfaces and its application in brain mapping research. Using the Laplace-Beltrami eigensystem, we represent each surface with an isometry invariant embedding in a high dimensional space. The key idea in our system is that we realize surface deformation in the embedding space via the iterative optimization of a conformal metric without explicitly perturbing the surface or its embedding. By minimizing a distance measure in the embedding space with metric optimization, our method generates a conformal map directly between surfaces with highly uniform metric distortion and the ability of aligning salient geometric features. Besides pairwise surface maps, we also extend the metric optimization approach for group-wise atlas construction and multi-atlas cortical label fusion. In experimental results, we demonstrate the robustness and generality of our method by applying it to map both cortical and hippocampal surfaces in population studies. For cortical labeling, our method achieves excellent performance in a crossvalidation experiment with 40 manually labeled surfaces, and successfully models localized brain development in a pediatric study of 80 subjects. For hippocampal mapping, our method produces much more significant results than two popular tools on a multiple sclerosis study of 109 subjects.
    03/2014; 33(7). DOI:10.1109/TMI.2014.2313812
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We introduce BrainPrint , a compact and discriminative representation of brain morphology. BrainPrint captures shape information of an ensemble of cortical and subcortical structures by solving the eigenvalue problem of the 2D and 3D Laplace-Beltrami operator on triangular (boundary) and tetrahedral (volumetric) meshes. This discriminative characterization enables new ways to study the similarity between brains; the focus can either be on a specific brain structure of interest or on the overall brain similarity. We highlight four applications for BrainPrint in this article: (i) subject identification, (ii) age and sex prediction, (iii) brain asymmetry analysis, and (iv) potential genetic influences on brain morphology. The properties of BrainPrint require the derivation of new algorithms to account for the heterogeneous mix of brain structures with varying discriminative power. We conduct experiments on three datasets, including over 3000 MRI scans from the ADNI database, 436 MRI scans from the OASIS dataset , and 236 MRI scans from the VETSA twin study. All processing steps for obtaining the compact representation are fully automated, making this processing framework particularly attractive for handling large datasets. Copyright © 2015 Elsevier Inc. All rights reserved.
    NeuroImage 01/2015; 109. DOI:10.1016/j.neuroimage.2015.01.032 · 6.13 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This paper presents a new framework for capturing large and complex deformations in image registration and atlas construction. This challenging and recurrent problem in computer vision and medical imaging currently relies on iterative and local approaches, which are prone to local minima and, therefore, limit present methods to relatively small deformations. Our general framework introduces to this effect a new direct feature matching technique that finds global correspondences between images via simple nearest-neighbor searches. More specifically, very large image deformations are captured in Spectral Forces, which are derived from an improved graph spectral representation. We illustrate the benefits of our framework through a new enhanced version of the popular Log-Demons algorithm, named the Spectral Log-Demons, as well as through a groupwise extension, named the Groupwise Spectral Log-Demons, which is relevant for atlas construction. The evaluations of these extended versions demonstrate substantial improvements in accuracy and robustness to large deformations over the conventional Demons approaches.
    International Journal of Computer Vision 05/2013; 107(3). DOI:10.1007/s11263-013-0681-5 · 3.53 Impact Factor