WESD - Weighted Spectral Distance for Measuring Shape Dissimilarity

Massachusetts General Hospital and Harvard Medical School, Charlestown.
IEEE Transactions on Software Engineering (Impact Factor: 5.78). 09/2013; 35(9):2284-97. DOI: 10.1109/TPAMI.2012.275
Source: PubMed


This paper presents a new distance for measuring shape dissimilarity between objects. Recent publications introduced the use of eigenvalues of the Laplace operator as compact shape descriptors. Here, we revisit the eigenvalues to define a proper distance, called Weighted Spectral Distance (WESD), for quantifying shape dissimilarity. The definition of WESD is derived through analyzing the heat trace. This analysis provides the proposed distance with an intuitive meaning and mathematically links it to the intrinsic geometry of objects. We analyze the resulting distance definition, present and prove its important theoretical properties. Some of these properties include: 1) WESD is defined over the entire sequence of eigenvalues yet it is guaranteed to converge, 2) it is a pseudometric, 3) it is accurately approximated with a finite number of eigenvalues, and 4) it can be mapped to the $([0,1))$ interval. Last, experiments conducted on synthetic and real objects are presented. These experiments highlight the practical benefits of WESD for applications in vision and medical image analysis.

Download full-text


Available from: Ender Konukoglu,
  • Source
    • "Because the LB eigen-system is isometry invariant, which is more general than typically desired pose invariance in shape analysis, they are naturally suited to shape analysis with intrinsic geometry. The LB eigenvalues and the nodal counts of eigen-functions were successfully applied to shape classification [17], [23], [28]. The LB eigen-functions as orthonormal basis on surfaces have been valuable for signal denoising [18], the construction of multi-scale shape representation [29], and the detection of spurious outliers in mesh reconstruction [25]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: In this paper we present a novel approach for the intrinsic mapping of anatomical surfaces and its application in brain mapping research. Using the Laplace-Beltrami eigensystem, we represent each surface with an isometry invariant embedding in a high dimensional space. The key idea in our system is that we realize surface deformation in the embedding space via the iterative optimization of a conformal metric without explicitly perturbing the surface or its embedding. By minimizing a distance measure in the embedding space with metric optimization, our method generates a conformal map directly between surfaces with highly uniform metric distortion and the ability of aligning salient geometric features. Besides pairwise surface maps, we also extend the metric optimization approach for group-wise atlas construction and multi-atlas cortical label fusion. In experimental results, we demonstrate the robustness and generality of our method by applying it to map both cortical and hippocampal surfaces in population studies. For cortical labeling, our method achieves excellent performance in a crossvalidation experiment with 40 manually labeled surfaces, and successfully models localized brain development in a pediatric study of 80 subjects. For hippocampal mapping, our method produces much more significant results than two popular tools on a multiple sclerosis study of 109 subjects.
    03/2014; 33(7). DOI:10.1109/TMI.2014.2313812
  • [Show abstract] [Hide abstract]
    ABSTRACT: Segmentation-based scores play an important role in the evaluation of computational tools in medical image analysis. These scores evaluate the quality of various tasks, such as image registration and segmentation, by measuring the similarity between two binary label maps. Commonly these measurements blend two aspects of the similarity: pose misalignments and shape discrepancies. Not being able to distinguish between these two aspects, these scores often yield similar results to a widely varying range of different segmentation pairs. Consequently, the comparisons and analysis achieved by interpreting these scores become questionable. In this paper we address this problem by exploring a new segmentation-based score, called normalized Weighted Spectral Distance (nWSD), that measures only shape discrepancies using the spectrum of the Laplace operator. Through experiments on synthetic and real data we demonstrate that nWSD provides additional information for evaluating differences between segmentations, which is not captured by other commonly used scores. Our results demonstrate that when jointly used with other scores, such as Dices similarity coefficient, the additional information provided by nWSD allows richer, more discriminative evaluations. We show for the task of registration that through this addition we can distinguish different types of registration errors. This allows us to identify the source of errors and discriminate registration results which so far had to be treated as being of similar quality in previous evaluation studies.
    09/2012; 31(12). DOI:10.1109/TMI.2012.2216281
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper presents a new framework for capturing large and complex deformations in image registration and atlas construction. This challenging and recurrent problem in computer vision and medical imaging currently relies on iterative and local approaches, which are prone to local minima and, therefore, limit present methods to relatively small deformations. Our general framework introduces to this effect a new direct feature matching technique that finds global correspondences between images via simple nearest-neighbor searches. More specifically, very large image deformations are captured in Spectral Forces, which are derived from an improved graph spectral representation. We illustrate the benefits of our framework through a new enhanced version of the popular Log-Demons algorithm, named the Spectral Log-Demons, as well as through a groupwise extension, named the Groupwise Spectral Log-Demons, which is relevant for atlas construction. The evaluations of these extended versions demonstrate substantial improvements in accuracy and robustness to large deformations over the conventional Demons approaches.
    International Journal of Computer Vision 05/2013; 107(3). DOI:10.1007/s11263-013-0681-5 · 3.81 Impact Factor
Show more