Effect of short-term administration of cinnamon on blood pressure in patients with prediabetes and type 2 diabetes

Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada. Electronic address: .
Nutrition (Impact Factor: 2.93). 07/2013; 29(10). DOI: 10.1016/j.nut.2013.03.007
Source: PubMed


The aim of this study was to systematically review and evaluate the effect of short-term administration of cinnamon on blood pressure regulation in patients with prediabetes and type 2 diabetes by performing a meta-analysis of randomized, placebo-controlled clinical trials.
Medical literature for randomized controlled trials (RCTs) of the effect of cinnamon on blood pressure was systematically searched; three original articles published between January 2000 and September 2012 were identified from the MEDLINE database and a hand search of the reference lists of the articles obtained through MEDLINE. The search terms included cinnamon or blood pressure or systolic blood pressure (SBP) or diastolic blood pressure (DBP) or diabetes. A random effects model was used to calculate weighted mean difference and 95% confidence intervals (CI).
The pooled estimate of the effect of cinnamon intake on SBP and DBP demonstrated that the use of cinnamon significantly decreased SBP and DBP by 5.39 mm Hg (95% CI, -6.89 to -3.89) and 2.6 mm Hg (95% CI, -4.53 to -0.66) respectively.
Consumption of cinnamon (short term) is associated with a notable reduction in SBP and DBP. Although cinnamon shows hopeful effects on BP-lowering potential, it would be premature to recommend cinnamon for BP control because of the limited number of studies available. Thus, undoubtedly a long-term, adequately powered RCT involving a larger number of patients is needed to appraise the clinical potential of cinnamon on BP control among patients with type 2 diabetes mellitus.

Download full-text


Available from: Nicola Robinson, Oct 06, 2015
1 Follower
125 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cinnamaldehyde (CA), a major component of cinnamon, is known to have important actions in the cardiovascular system, including vasorelaxation and decrease in blood pressure. Although CA-induced activation of the chemosensory cation channel TRPA1 seems to be involved in these phenomena, it has been shown that genetic ablation of Trpa1 is insufficient to abolish CA effects. Here, we confirm that CA relaxes rat aortic rings and report that it has negative inotropic and chronotropic effects on isolated mouse hearts. Considering the major role of L-type Ca(2+) channels in the control of the vascular tone and cardiac contraction, we used whole-cell patch-clamp to test whether CA affects L-type Ca(2+) currents in mouse ventricular cardiomyocytes (VCM, with Ca(2+) as charge carrier) and in mesenteric artery smooth muscle cells (VSMC, with Ba(2+) as charge carrier). We found that CA inhibited L-type currents in both cell types in a concentration-dependent manner, with little voltage-dependent effects. However, CA was more potent in VCM than in VSMC and caused opposite effects on the rate of inactivation. We found these divergences to be at least in part due to the use of different charge carriers. We conclude that CA inhibits L-type Ca(2+) channels and that this effect may contribute to its vasorelaxing action. Importantly, our results demonstrate that TRPA1 is not a specific target of CA and indicate that the inhibition of voltage-gated Ca(2+) channels should be taken into account when using CA to probe the pathophysiological roles of TRPA1.
    Pflügers Archiv - European Journal of Physiology 02/2014; 466(11). DOI:10.1007/s00424-014-1472-8 · 4.10 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This randomised controlled trial assessed the acute and long-term effects of daily supplementation of kanuka honey, formulated with cinnamon, chromium and magnesium on glucose metabolism, weight and lipid parameters in individuals with type 2 diabetes. Twelve individuals with type 2 diabetes received 53.5 g of a formulated honey and a control (non-formulated) kanuka honey in a random order for 40 days, using cross-over design. Fasting glucose, insulin, HbA1c, lipids and anthropometric measures were measured at baseline and end of treatment. A meal tolerance test was performed at baseline to assess acute metabolic response. There was no statistically significant difference in acute glucose metabolism between treatment groups, as measured by the Matsuda index and AUC for glucose and insulin. After the 40-day intervention with honey, fasting glucose did not differ significantly between the two treatments (95 % CI -2.6 to 0.07). There was no statistically significant change in HbA1c or fasting insulin. There was a statistically significant reduction in total cholesterol by -0.29 mmol/L (95 % CI -0.57 to -0.23), LDL cholesterol by -0.29 mmol/L (95 % CI -0.57 to -0.23) and weight by -2.2 kg (95 % CI -4.2 to -0.1). There was a trend towards increased HDL and reduced systolic blood pressure in the intervention treatment. The addition of cinnamon, chromium and magnesium supplementation to kanuka honey was not associated with a significant improvement in glucose metabolism or glycaemic control in individuals with type 2 diabetes. Use of the formulated honey was associated with a reduction in weight and improvements in lipid parameters, and should be investigated further.
    European Journal of Nutrition 05/2015; DOI:10.1007/s00394-015-0926-x · 3.47 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cinnamon, due to its exotic flavor and aroma, is a key ingredient in the kitchen of every household. From the beginning of its use in 2800 BC by our ancestors for various purposes such as anointment, embalming and various ailments, it has instigated the interest of many researchers. Recently many trials have explored the beneficial effects of cinnamon in Parkinsons, diabetes, blood, and brain. After extensive research on PubMed and Google scholar, data were collected regarding its antioxidant, anti-inflammatory, antilipemic, antidiabetic, antimicrobial, and anticancer effect. This systematic review underlines the surplus health benefits of this clandestine ingredient and the scope of further research in these clinical scenarios.
    Pharmacognosy Research 06/2015; 7(5). DOI:10.4103/0974-8490.157990