Genetics of non-syndromic autosomal recessive mental retardation

Department of Paediatrics and Child Health, Aga Khan University Hospital, Karachi.
Journal of the Pakistan Medical Association (Impact Factor: 0.41). 07/2013; 63(1):106-10.
Source: PubMed


Non-syndromic mental retardation is one of the most serious neurodevelopmental disorders, which has a serious impact not only on the affected individuals and their families but also on the health care system and society. Previously research has been more focused on the X-linked mental retardation and only recently studies have shown that non-syndromic autosomal recessive mental retardation is extremely heterogeneous and contributes much more than the X-linked mental retardation. But very little is known about the genes and loci involved in nonsyndromic autosomal recessive mental retardation than the X-linked mental retardation. To date only thirty loci and ten genes have been established associated with the non-syndromic autosomal recessive mental retardation. This short review presents an overview of the current knowledge on clinical information available for the ten genes associated with this unexplored group of genetic disorder.

Download full-text


Available from: Bushra Afroze, Apr 09, 2015
  • Source
    • "Autosomal-dominant de novo mutations have been found as an important cause of ID in sporadic patients and have a low recurrence risk (Veltman and Brunner 2012), whereas the role of inherited variants in unaffected parents is less well understood. However, autosomal-recessive ID has a high recurrence risk and is the most common type of ID in consanguineous families (Musante and Ropers 2014), although only approximately 30 loci and 10 genes have been identified to date (Afroze and Chaudhry 2013). "

    10/2015; 1(1):a000562. DOI:10.1101/mcs.a000562
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this sequel article on Amlexanox I investigate the multi-tasking potential for this drug, a recently discovered readthrough agent with immune-modulatory properties, for management of a wide range of human diseases including ageing modeled as a disease. The focus is not only on correction or disease rescue, but also on early prevention through use of Amlexanox prophylaxis. The concept of readthrough of nonsense mutations is further explored and correlation of nonsense mutation with cancer spread and stage is examined. Many other prevalent disease processes are examined in the light of nonsense-mediated causation, for example, intellectual disability and ageing. A primary aim of my current investigation is to show that both communicable diseases (related to infections from viral and bacterial agents) as well as non-communicable diseases (such as cancer, diabetes and inherited malformations/dysfunctions) may all form suited targets for Amlexanox therapy. As such, ex vivo and in vitro studies and animal models are discussed with the overall theme being to translate positive findings into the clinic. Clearly, this would have a major benefit with management in many inherited disease states and for infectious diseases. Further, a major benefit can be predicted for acquired chronic conditions too. The long understood property of Amlexanox in immune-modulation is exploited in this analysis. By acting through part-control of the NF-kappaB transcriptional factor-inflammatory axis, Amlexanox is capable of modulating the pathophysiology of such processes as cancer, vascular disease and diabetes with obesity. Moderating the response to pathogen challenge is a focus of attention in this present investigation. This is important insofar as Amlexanox mediates inflammatory-axis regulation and host-pathogen interactions, strongly suggesting that it must be explored in this context. As a result of this, interference with this arm of the innate immune system may well have consequences in terms of exposure to certain infectious agents. Detailed animal model systems as well as formal clinical trials are definitely called for to clarify the longer-term adverse reaction this may produce in the face of pathogen exposure. Amlexanox has been clinically approved for many years and, along with other drugs with similar immune-modulating capacity, appears satisfactory for long-term usage. Therefore, in practical terms, pathogen challenge in such a context may not pose significant threat. Overall, clinical trials are universally called for in order to ascertain the full potential for this old drug presenting with some exciting 'new tricks'. I aim to be able to purposefully 'repurpose' Amlexanox and add this drug into the 'Doctor's bag' as a highly valuable medical adjunct to manage a wide plethora of medical conditions.
    Journal of Bioanalysis and Biomedicine 12/2013; 05(05). DOI:10.4172/1948-593X.1000095
  • [Show abstract] [Hide abstract]
    ABSTRACT: TUSC3 interacts with the protein phosphatase 1 and magnesium ion transport system, which plays an important role in learning and memory. Abnormal conditions of learning and memory are common clinical characteristics of mental retardation (MR). However, the association of TUSC3 genetic polymorphisms with MR remains unknown. A total of 456 DNA samples including 174 nuclear families containing MR were collected in the Qinba mountain area of China. The genotypes of eight tag single nucleotide polymorphisms of TUSC3 were evaluated with traditional genetic methods. Family-based association tests, transmission disequilibrium tests (TDTs), and haplotype relative risk (HRR) analyses were performed to investigate the association between genetic variants of the TUSC3 gene and MR. The genetic polymorphisms rs10093881, rs6530893, and rs6994908 were associated with MR (all P values <0.05) based upon the results of single-site TDT and HRR analyses. The haplotype block consisting of rs6530893 and rs6994908, harboring the sixth exon of TUSC3, was also associated with MR (all P values <0.05). This study demonstrated an association between genetic polymorphisms of the TUSC3 gene and MR in the Qinba mountain area, the sixth exon of which might contribute to the risk of MR. However, further studies are needed on the causal mechanisms in this association.
    Genetics and molecular research: GMR 05/2015; 14(2):5022-5030. DOI:10.4238/2015.May.12.5 · 0.78 Impact Factor
Show more