Article

A Homozygous Founder Mutation in Desmocollin-2 (DSC2) Causes Arrhythmogenic Cardiomyopathy in the Hutterite Population.

1Libin Cardiovascular Institute of Alberta & Departments of Cardiac Sciences and Medical Genetics, University of Calgary, Calgary, Canada.
Circulation Cardiovascular Genetics (Impact Factor: 5.34). 07/2013; 6(4). DOI: 10.1161/CIRCGENETICS.113.000097
Source: PubMed

ABSTRACT -Dominant mutations in cellular junction proteins are the major cause of arrhythmogenic cardiomyopathy, whereas recessive mutations in those proteins cause cardiocutaneous syndromes such as Naxos and Carvajal syndrome. The Hutterites are distinct genetic isolates who settled in North America in 1874. Descended from fewer than 100 founders, they trace their origins to the 16(th) century Europe.
-We clinically and genetically evaluated two large families of the Alberta Hutterite population with a history of sudden death and found several individuals with severe forms of biventricular cardiomyopathy characterized by mainly left-sided localized aneurysms, regions of wall thinning with segmental akinesis in addition to typical electrical and histological features known for arrhythmogenic right ventricular cardiomyopathy (ARVC). We identified a homozygous truncation mutation, c.1660C>T (p.Q554X) in desmocollin-2 (DSC2) in affected individuals, and determined a carrier frequency of this mutation of 9.4% (1 in 10.6) among 1,535 Schmiedeleut Hutterites, suggesting a common founder in that subgroup. Immunohistochemistry of endomyocardial biopsy samples revealed altered expression of the truncated DSC2 protein at the intercalated discs, but only minor changes in immunoreactivity of other desmosomal proteins. Recombinant expressed mutant DSC2 protein in cells confirmed a stable, partially processed truncated protein with cytoplasmic and membrane localization.
-A homozygous truncation mutation in DSC2 leads to a cardiac restricted phenotype of an early onset biventricular arrhythmogenic cardiomyopathy. The truncated protein remains partially stable and localized at the intercalated discs. These data suggest that the processed DSC2 protein plays a role in maintaining desmosome integrity and function.

0 Followers
 · 
92 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The p.Gln554X mutation in desmocollin-2 (DSC2) is prevalent in ≈10% of the Hutterite population. While the homozygous mutation causes severe biventricular arrhythmogenic right ventricular cardiomyopathy, the phenotypic features and prognosis of heterozygotes remain incompletely understood. Eleven homozygotes (mean age 32±8 years, 45% female), 28 heterozygotes (mean age 40±15 years, 50% female), and 22 mutation-negatives (mean age 43±17 years, 41% female) were examined. Diagnostic testing was performed as per the arrhythmogenic right ventricular cardiomyopathy modified Task Force Criteria. Inverted T waves in the right precordial leads on ECG were seen in all homozygotes but not in their counterparts (P<0.001). Homozygotes had higher median daily premature ventricular complex burden than did heterozygotes or mutation-negatives (1407 [IQR 1080 to 2936] versus 2 [IQR 0 to 6] versus 6 [IQR 0 to 214], P=0.0002). Ventricular tachycardia was observed in 60% of homozygotes but in none of the remaining individuals (P<0.001). On cardiac magnetic resonance imaging, homozygotes had significantly larger indexed end-diastolic volumes (right ventricular: 122±24 versus 83±17 versus 83±12 mL/m(2), P<0.0001; left ventricular: 93±18 versus 76±13 versus 80±11 mL/m(2), P=0.0124) and lower ejection fraction values compared with heterozygotes and mutation-negatives (right ventricular ejection fraction: 41±9% versus 59±9% versus 61±6%, P<0.0001; left ventricular ejection fraction: 53±8% versus 65±5% versus 64±5%, P<0.0001). Most affected individuals lacked right ventricular wall motion abnormalities. Thus, few met cardiac magnetic resonance imaging task force criteria. The ECG reliably identifies homozygous p.Gln554X carriers and may be useful as an initial step in the screening of high-risk Hutterites. The cardiac phenotype of heterozygotes appears benign, but further prospective follow-up of their arrhythmic risk is needed. © 2014 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.
  • International Journal of Cardiology 03/2015; 182. DOI:10.1016/j.ijcard.2014.12.079 · 6.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Arrhythmogenic right ventricular cardiomyopathy is an inherited cardiac entity characterized by right ventricular, or biventricular, fibrofatty replacement of myocardium. Structural alterations may lead to sudden cardiac death, mainly in young males during exercise. Autosomal dominant pattern of inheritance is reported in most parts of pathogenic genetic variations identified. Currently, 13 genes have been associated with the disease but nearly 40 % of clinically diagnosed cases remain without a genetic diagnosis. New genetic technologies allow further genetic analysis, generating a significant amount of genetic data in novel genes, which is often classified as of ambiguous significance. We focus on genetic advances of arrhythmogenic right ventricular cardiomyopathy, helping clinicians to interpret and translate genetic data into clinical practice.
    Clinical Research in Cardiology 11/2014; 104(4). DOI:10.1007/s00392-014-0794-z · 4.17 Impact Factor