Safety of MF59-Adjuvanted Influenza Vaccination in the Elderly: Results of a Comparative Study of MF59-Adjuvanted Vaccine Versus Nonadjuvanted Influenza Vaccine in Northern Italy

American journal of epidemiology (Impact Factor: 5.23). 07/2013; 178(7). DOI: 10.1093/aje/kwt078
Source: PubMed


MF59-adjuvanted trivalent influenza vaccine (Novartis Vaccines and Diagnostics, Siena, Italy) has been shown to be more effective than nonadjuvanted vaccine in the elderly population. Here we present results from a large-scale, observational, noninterventional, prospective postlicensure study that evaluated the safety of MF59-adjuvanted vaccine in elderly subjects aged 65 years or more. The study was performed in 5 northern Italian health districts during the 2006-2007, 2007-2008, and 2008-2009 influenza seasons. The choice of vaccine-either adjuvanted vaccine or a nonadjuvanted influenza vaccine-was determined by individual providers on the basis of local influenza vaccination policy. Hospitalizations for potential adverse events of special interest (AESIs) were identified from hospital databases and then reviewed against recognized case definitions to identify confirmed cases of AESI. Cumulative incidences were calculated for AESIs in predefined biologically plausible time windows, as well as in a 6-month window following vaccination. During the 3-year study period, 170,988 vaccine doses were administered to a total of 107,661 persons. Despite the large study size, cases of AESI resulting in hospitalization were rare, and risks of AESI were similar in both the MF59-adjuvanted and nonadjuvanted vaccination groups. In conclusion, similar safety profiles were observed for both nonadjuvanted and MF59-adjuvanted seasonal influenza vaccines in elderly recipients.

Download full-text


Available from: Domenico Mavilio, May 28, 2014
16 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: Immunologic adjuvants are essential for current vaccines to maximize their efficacy. Unfortunately, few have been found to be sufficiently effective and safe for regulatory authorities to permit their use in vaccines for humans and none have been approved for use with intradermal vaccines. The development of new adjuvants with the potential to be both efficacious and safe constitutes a significant need in modern vaccine practice. The use of non-damaging laser light represents a markedly different approach to enhancing immune responses to a vaccine antigen, particularly with intradermal vaccination. This approach, which was initially explored in Russia and further developed in the US, appears to significantly improve responses to both prophylactic and therapeutic vaccines administered to the laser-exposed tissue, particularly the skin. Although different types of lasers have been used for this purpose and the precise molecular mechanism(s) of action remain unknown, several approaches appear to modulate dendritic cell trafficking and/or activation at the irradiation site via the release of specific signaling molecules from epithelial cells. The most recent study, performed by the authors of this review, utilized a continuous wave near-infrared laser that may open the path for the development of a safe, effective, low-cost, simple-to-use laser vaccine adjuvant that could be used in lieu of conventional adjuvants, particularly with intradermal vaccines. In this review, we summarize the initial Russian studies that have given rise to this approach and comment upon recent advances in the use of non-tissue damaging lasers as novel physical adjuvants for vaccines.
    Human Vaccines and Immunotherapeutics 07/2014; 10(7):1892-907. DOI:10.4161/hv.28840 · 2.37 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Aim: Adjuvanted influenza vaccines can overcome the poor antibody response of conventional non-adjuvanted vaccines in the elderly. We evaluated the immunogenicity, safety and clinical effectiveness of an MF59(®)-adjuvanted trivalent influenza vaccine (aTIV) compared with a non-adjuvanted vaccine (TIV) in subjects ≥65 years old, with or without co-morbidities. Methods: In 2010-2011, subjects (N=7082) were randomized to receive one dose of aTIV or TIV. Co-primary objectives were to assess lot-to-lot consistency of aTIV, non-inferiority, superiority and immunogenicity 22 days after vaccination. Clinical effectiveness, reactogenicity and serious adverse events were monitored up to Day 366. Results: The immunological equivalence of three lots of aTIV was demonstrated. aTIV was not only non-inferior to TIV but also elicited significantly higher antibody responses at Day 22 than TIV against all homologous and heterologous strains, even in subjects with co-morbidities. Superiority was not established. Reactogenicity was higher in the aTIV group, but reactions were mild to moderate and transient. Conclusions: aTIV elicited a significantly higher antibody response than TIV, especially against A/H3N2 strains, although superiority by pre-defined criteria was not formally met. The study demonstrates potential immunological benefits of MF59-adjuvanted influenza vaccines for the elderly. This trial was registered with (NCT01162122).
    Vaccine 07/2014; 32(39). DOI:10.1016/j.vaccine.2014.07.013 · 3.62 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Inactivated influenza vaccines are produced every year to fight against the seasonal epidemics of influenza. Despite the nonoptimal coverage, even in subjects at risk like the elderly, pregnant women, etc., these vaccines significantly reduce the burden of mortality and morbidity linked to the influenza infection. Importantly, these vaccines have also contributed to reduce the impact of the last pandemics. Nevertheless, the performance of these vaccines can be improved mainly in those age groups, like children and the elderly, in which their efficacy is suboptimal. The use of adjuvants has proven effective to this scope. Oil-in-water adjuvants like MF59 and AS03 have been licensed and widely used, and shown efficacious in preventing influenza infection in the last pandemic. MF59-adjuvanted inactivated vaccine was more efficacious than non-adjuvanted vaccine in preventing influenza infection in young children and in reducing hospitalization due to the influenza infection in the elderly. Other adjuvants are now at different stages of development and some are being tested in clinical trials. The perspective remains to improve the way inactivated vaccines are prepared and to accelerate their availability, mainly in the case of influenza pandemics, and to enhance their efficacy/effectiveness for a more successful impact at the public health level.
    Current topics in microbiology and immunology 07/2014; 386. DOI:10.1007/82_2014_406 · 4.10 Impact Factor
Show more