Article

Fulvene-5 inhibition of Nadph oxidases attenuate activation of epitehlial sodium channels in A6 distal nephron cells.

1Emory University.
AJP Renal Physiology (Impact Factor: 4.42). 07/2013; DOI: 10.1152/ajprenal.00098.2013
Source: PubMed

ABSTRACT Nadph oxidase 4 is an important cellular source of reactive oxygen species (ROS) generation in the kidney. Novel anti-oxidant drugs, such as Nox4-inhibitor compounds, are being developed. There is however, very little experimental evidence for the biological role and regulation of Nadph oxidase isoforms in the kidney. Herein, we show that Fulvene-5 is an effective inhibitor of Nox-generated ROS and report the role of Nox isoforms in activating epithelial sodium channels (ENaC) in A6 distal nephron cells via oxidant signaling and cell stretch activation. Using single channel patch clamp analysis, we report that Fulvene-5 blocked the increase in ENaC activity that is typically observed with H2O2 treatment of A6 cells: average ENaC NPo values decreased from a baseline level of 1.04±0.18 (mean±SE) to 0.25±0.08 following Fulvene-5 treatment. H2O2 treatment failed to increase ENaC activity in the presence of Fulvene-5. Moreover, Fulvene-5 treatment of A6 cells blocked the osmotic-cell stretch response of A6 cells; indicating that stretch activation of Nox-derived ROS plays an important role in ENaC regulation. Together, these findings indicate that Fulvene-5, and perhaps other classes of antioxidant inhibitors, may represent a novel class of compounds useful for the treatment of pathological disorders stemming from inappropriate ion channel activity, such as hypertention.

0 Bookmarks
 · 
91 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ion channels perform a variety of cellular functions in lung epithelia. Oxidant- and antioxidant-mediated mechanisms (that is--redox regulation) of ion channels are areas of intense research. Significant progress has been made in our understanding of redox regulation of ion channels since the last Experimental Biology report in 2003. Advancements include: 1) identification of non-phagocytic NADPH oxidases as sources of regulated reactive species (RS) production in epithelia, 2) an understanding that excessive treatment with antioxidants can result in greater oxidative stress, and 3) characterization of novel RS signaling pathways that converge upon ion channel regulation. These advancements, as discussed at the 2013 Experimental Biology Meeting in Boston, MA, impact our understanding of oxidative stress in the lung, and in particular, illustrate that the redox state has profound effects on ion channel and cellular function.
    AJP Lung Cellular and Molecular Physiology 09/2013; · 3.52 Impact Factor