Article

MLK3 promotes metabolic dysfunction induced by saturated fatty acid-enriched diet.

1.
AJP Endocrinology and Metabolism (Impact Factor: 4.51). 07/2013; DOI: 10.1152/ajpendo.00197.2013
Source: PubMed

ABSTRACT Saturated fatty acids activate the cJun NH2-terminal kinase (JNK) pathway, resulting in chronic low-grade inflammation and the development of insulin resistance. Mixed-lineage kinase 3 (MLK3) is a mitogen activated protein kinase kinase kinase (MAP3K) that mediates JNK activation in response to saturated fatty acids in vitro, however, the exact mechanism for diet-induced JNK activation in vivo is not known. Here we have used MLK3 deficient mice to examine the role of MLK3 in a saturated fat diet model of obesity. MLK3 KO mice fed a high fat diet enriched in medium chain saturated fatty acids for 16 weeks had decreased body fat compared to wild-type (WT) mice, due to increased energy expenditure, independently of food consumption and physical activity. Moreover, MLK3 deficiency attenuated palmitate-induced JNK activation and M1 polarization in bone marrow derived macrophages in vitro, and obesity-induced JNK activation, macrophage infiltration into adipose tissue and expression of pro-inflammatory cytokines in vivo. In addition, loss of MLK3 improved insulin resistance and decreased hepatic steatosis. Together, these data demonstrate that MLK3 promotes saturated fatty acid-induced JNK activation in vivo and diet-induced metabolic dysfunction.

0 Bookmarks
 · 
76 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mitogen-activated protein kinase pathways play an important role in neointima formation secondary to vascular injury, in part by promoting proliferation of vascular smooth muscle cells (VSMC). Mixed-lineage kinase 3 (MLK3) is a mitogen-activated protein kinase kinase kinase that activates multiple mitogen-activated protein kinase pathways and has been implicated in regulating proliferation in several cell types. However, the role of MLK3 in VSMC proliferation and neointima formation is unknown. The aim of this study was to determine the function of MLK3 in the development of neointimal hyperplasia and to elucidate the underlying mechanisms. Neointima formation was analyzed after endothelial denudation of carotid arteries from wild-type and MLK3-deficient mice. MLK3 deficiency promoted injury-induced neointima formation and increased proliferation of primary VSMC derived from aortas isolated from MLK3-deficient mice compared with wild-type mice. Furthermore, MLK3 deficiency increased the activation of p63Rho guanine nucleotide exchange factor, RhoA, and Rho kinase in VSMC, a pathway known to promote neointimal hyperplasia, and reconstitution of MLK3 expression attenuated Rho kinase activation. Furthermore, cJun NH2-terminal kinase activation was decreased in MLK3-deficient VSMC, and proliferation of wild-type but not MLK3 knockout cells treated with a cJun NH2-terminal kinase inhibitor was attenuated. We demonstrate that MLK3 limits RhoA activation and injury-induced neointima formation by binding to and inhibiting the activation of p63Rho guanine nucleotide exchange factor, a RhoA activator. In MLK3-deficient cells, activation of p63Rho guanine nucleotide exchange factor proceeds in an unchecked manner, leading to a net increase in RhoA pathway activation. Reconstitution of MLK3 expression restores MLK3/p63Rho guanine nucleotide exchange factor interaction, which is attenuated by feedback from activated cJun NH2-terminal kinase.
    Arteriosclerosis Thrombosis and Vascular Biology 05/2014; · 6.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The M1 and M2 states of macrophage polarization are the two extremes of a physiologic/phenotypic continuum that is dynamically influenced by environmental signals. The M1/M2 paradigm is an excellent framework to understand and appreciate some of the diverse functions that macrophages perform. Molecular analysis of mouse and human macrophages indicated that they gain M1 and M2-related functions after encountering specific ligands in the tissue environment. In this perspective, I discuss the function of recepteur d'origine nantais (RON) receptor tyrosine kinase in regulating the M2-like state of macrophage activation Besides decreasing pro-inflammatory cytokine production in response to toll-like receptor-4 activation, macrophage-stimulating protein strongly suppresses nitric oxide synthase and at the same time upregulates arginase, which is the rate limiting enzyme in the ornithine biosynthesis pathway. Interestingly, RON signaling preserved some of the characteristics of the M1 state, while still promoting the hallmarks of M2 polarization. Therefore, therapeutic modulation of RON activity can shift the activation state of macrophages between acute and chronic inflammatory states.
    Frontiers in Immunology 10/2014; 5:546.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Non-alcoholic steatohepatitis (NASH) is one of the most common chronic liver diseases worldwide (1). Despite the large number of studies published in the field, the molecular signals triggering the progression of NASH from simple steatosis to necroinflammation are still poorly understood. One of the most important and early features of progressive NASH is lipoapoptosis of hepatocytes that creates a proinflammatory and fibrogenic environment (2, 3). This article is protected by copyright. All rights reserved.
    Liver international: official journal of the International Association for the Study of the Liver 04/2014; · 4.41 Impact Factor