Novel 18F-Labeled Arylquinoline Derivatives for Noninvasive Imaging of Tau Pathology in Alzheimer Disease.

Department of Pharmacology, Tohoku University School of Medicine, Sendai, Japan.
Journal of Nuclear Medicine (Impact Factor: 5.56). 07/2013; 54(8). DOI: 10.2967/jnumed.112.117341
Source: PubMed

ABSTRACT Neurofibrillary tangles in Alzheimer disease (AD) brains are composed of the microtubule-associated protein tau. Noninvasive monitoring of tau protein aggregates in the living brain will provide useful information regarding tau pathophysiology in AD. However, no PET probes are currently available for selective detection of tau pathology in AD. We have previously reported (18)F-labeled THK-523 ((18)F-6-(2-fluoroethoxy)-2-(4-aminophenyl)quinoline) as a tau imaging radiotracer candidate for PET. After compound optimization, we developed novel (18)F-labeled arylquinoline derivatives, (18)F-THK-5105 and (18)F-THK-5117, for use as tau imaging PET tracers.
(18)F-labeled compounds were prepared from the corresponding tosylated precursors. The binding affinity of compounds to synthetic tau aggregates and tau-rich AD brain homogenates was determined by saturation and competition binding assays. The binding selectivity of compounds to tau pathology was evaluated by autoradiography of AD brain sections. The pharmacokinetics of compounds were assessed in biodistribution studies in normal mice. A 14-d toxicity study with intravenous administration of compounds was performed using rats and mice.
In vitro binding assays demonstrated higher binding affinity of THK-5105 and THK-5117 than THK-523 to tau protein aggregates and tau-rich AD brain homogenates. Autoradiographic analyses of AD brain sections showed that these radiotracers preferentially bound to neurofibrillary tangles and neuropil threads, which colocalized with Gallyas-positive and immunoreactive tau protein deposits. The distribution of this radiotracer binding in AD brain sections was completely different from that of (11)C-Pittsburgh compound B, showing preferential binding to amyloid plaques. Furthermore, these derivatives demonstrated abundant initial brain uptake and faster clearance in normal mice than (18)F-THK-523 and other reported (18)F-labeled radiotracers. THK-5105 and THK-5117 showed no toxic effects related to the administration of these compounds in mice and rats and no significant binding for various neuroreceptors, ion channels, and transporters at 1-μM concentrations.
(18)F-labeled THK-5105 and THK-5117 are promising candidates as PET tau imaging radiotracers.

  • [Show abstract] [Hide abstract]
    ABSTRACT: In several neurodegenerative diseases that are collectively called tauopathies, progressive accumulation of tau in the brain is closely associated with neurodegeneration and cognitive impairment. Noninvasive detection of tau protein deposits in the brain would be useful to diagnose tauopathies as well as to track and predict disease progression. Recently, several tau PET tracers including T807, THK-5117, and PBB3 have been developed and succeeded in imaging neurofibrillary pathology in vivo. For use of tau PET as a biomarker of tau pathology in Alzheimer's disease, PET tracers should have high affinity to PHF-tau and high selectivity for tau over amyloid-β and other protein deposits. PET tau imaging enables the longitudinal assessment of the spatial pattern of tau deposition and its relation to amyloid-β pathology and neurodegeneration. This technology could also be applied to the pharmacological assessment of anti-tau therapy, thereby allowing preventive interventions.
    Current Neurology and Neuroscience Reports 11/2014; 14(11):500. · 3.67 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hereditary frontotemporal dementia (FTD) associated with mutations in the Microtubule Associated Protein Tau gene (MAPT) is a protean disorder. Three neuropathologic subtypes can be recognized, based on the presence of inclusions made of tau isoforms with 3 and 4 repeats, predominantly 3 repeats and mostly 4 repeats. This is relevant for establishing a correlation between structural magnetic resonance imaging and positron emission tomography using tracers specific for aggregated tau. Longitudinal studies will be essential to determine the evolution of anatomical alterations from the asymptomatic stage to the various phases of disease following the onset of symptoms.
    Neuropathology and Applied Neurobiology 12/2014; · 4.84 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Gender-based medicine is medical research and care conducted with conscious consideration of the sex and gender differences of subjects and patients. This issue of Seminars is focused on diseases for which nuclear medicine is part of routine management and for which the diseases have sex- or gender-based differences that affect incidence or pathophysiology and that thus have differences that can potentially affect the results of the relevant nuclear medicine studies. In this first article, we discuss neurologic diseases, certain gastrointestinal conditions, and thyroid conditions. The discussion is in the context of those sex- or gender-based aspects of these diseases that should be considered in the performance, interpretation, and reporting of the relevant nuclear medicine studies. Cardiovascular diseases, gynecologic diseases, bone conditions such as osteoporosis, pediatric occurrences of some diseases, human immunodeficiency virus-related conditions, and the radiation dose considerations of nuclear medicine studies are discussed in the other articles in this issue.
    Seminars in Nuclear Medicine 11/2014; 44(6):413-422. · 3.13 Impact Factor