Article

Mapping the Redox State of CHOP-Treated Non-Hodgkin's Lymphoma Xenografts in Mice.

Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA.
Advances in Experimental Medicine and Biology (Impact Factor: 2.01). 01/2013; 789:243-9. DOI: 10.1007/978-1-4614-7411-1_33
Source: PubMed

ABSTRACT Drug treatment may alter the metabolism of cancer cells and may alter the mitochondrial redox state. Using the redox scanner that collects the fluorescence signals from both the oxidized flavoproteins (Fp) and the reduced form of nicotinamide adenine dinucleotide (NADH) in snap-frozen tumor tissues, we investigated the effects of chemotherapy on mouse xenografts of a human diffuse large B-cell lymphoma cell line (DLCL2). The mice in the treatment group were treated with CHOP - cyclophosphamide (C) + hydroxydoxorubicin (H) + Oncovin (O) + prednisone (P) using the following regimen: CHO administration on day 1 followed by prednisone administration on day 1-5. On day 5 the mitochondrial redox state of the treated group was slightly more reduced than that of the control group (p = 0.049), and the Fp content of the treated group was significantly decreased (p = 0.033).

0 Followers
 · 
75 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: NAD+/NADH redox state has been implicated in many diseases such as cancer and diabetes as well as in the regulation of embryonic development and aging. To fluorimetrically assess the mitochondrial redox state, Dr. Chance and co-workers measured the fluorescence of NADH and oxidized flavoproteins (Fp) including flavin–adenine–dinucleotide (FAD) and demonstrated their ratio (i.e. the redox ratio) is a sensitive indicator of the mitochondrial redox states. The Chance redox scanner was built to simultaneously measure NADH and Fp in tissue at submillimeter scale in 3D using the freeze-trap protocol. This paper summarizes our recent research experience, development and new applications of the redox scanning technique in collaboration with Dr. Chance beginning in 2005. Dr. Chance initiated or actively involved in many of the projects during the last several years of his life. We advanced the redox scanning technique by measuring the nominal concentrations (in reference to the frozen solution standards) of the endogenous fluorescent analytes, i.e., [NADH] and [Fp] to quantify the redox ratios in various biological tissues. The advancement has enabled us to identify an array of the redox indices as quantitative imaging biomarkers (including [NADH], [Fp], [Fp]/([NADH]+[Fp]), [NADH]/[Fp], and their standard deviations) for studying some important biological questions on cancer and normal tissue metabolism. We found that the redox indices were associated or changed with (1) tumorigenesis (cancer versus non-cancer of human breast tissue biopsies); (2) tumor metastatic potential; (3) tumor glucose uptake; (4) tumor p53 status; (5) PI3K pathway activation in pre-malignant tissue; (6) therapeutic effects on tumors; (7) embryonic stem cell differentiation; (8) the heart under fasting. Together, our work demonstrated that the tissue redox indices obtained from the redox scanning technique may provide useful information about tissue metabolism and physiology status in normal and diseased tissues. The Chance redox scanner and other redox imaging techniques may have wide-ranging potential applications in many fields, such as cancer, diabetes, developmental process, mitochondrial diseases, neurodegenerative diseases, and aging.
    Journal of Innovative Optical Health Sciences 04/2014; 07(02). DOI:10.1142/S179354581430002X · 0.93 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We are interested in investigating whether cancer therapy may alter the mitochondrial redox state in cancer cells to inhibit their growth and survival. The redox state can be imaged by the redox scanner that collects the fluorescence signals from both the oxidized-flavoproteins (Fp) and the reduced form of nicotinamide adenine dinucleotide (NADH) in snap-frozen tissues and has been previously employed to study tumor aggressiveness and treatment responses. Here, with the redox scanner we investigated the effects of chemotherapy on mouse xenografts of a human diffuse large B-cell lymphoma cell line (DLCL2). The mice were treated with CHOP therapy, i.e., cyclophosphamide (C) + hydroxydoxorubicin (H) + Oncovin (O) + prednisone (P) with CHO administration on day 1 and prednisone administration on days 1-5. The Fp content of the treated group was significantly decreased (p = 0.033) on day 5, and the mitochondrial redox state of the treated group was slightly more reduced than that of the control group (p = 0.048). The decrease of the Fp heterogeneity (measured by the mean standard deviation) had a border-line statistical significance (p = 0.071). The result suggests that the mitochondrial metabolism of lymphoma cells was slightly suppressed and the lymphomas became less aggressive after the CHOP therapy.
    Journal of Innovative Optical Health Sciences 04/2013; 6(2):1350011. DOI:10.1142/S1793545813500119 · 0.93 Impact Factor